Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phambachhung
Xem chi tiết
Đặng vân anh
Xem chi tiết
kiss_rain_and_you
19 tháng 4 2015 lúc 22:20

a,

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}

phambachhung
Xem chi tiết
Khiếu Việt Bách
Xem chi tiết
Khổng Mai Linh
28 tháng 3 2018 lúc 21:57

a,1/51 > 1/100

  1/52 > 1/100

   1/53 > 1/100

    ...

     1/100=1/100

=>H>1/100 + 1/100 + 1/100 +...+1/100

    H>50/100=1/2   

          1/51<1/50

         1/52<1/50

           ....

           1/100<1/50

=>H<1/50+1/50+...+1/50

     H<50/50=1

 Vay1/2<H<1

Kỳ Tỉ
Xem chi tiết
knight_Lucifer
23 tháng 4 2016 lúc 20:50

b, đặt cái 1/21 + 1/22 +1/23+....+1/40 là A nhé và A có 20 hạng tử

Ta  có 1/21 + 1/22 +1/ 23+......+1/30>1/30 +1/30 +....+1/30 =10/30 =1/3(*)

lại có 1/31 + 1/32+.....+1/40>1/40 + 1/40 + 1/40.....=10/40=1/4(**)

từ (*) và (**) => A> 1/3 +1/4

                       A>7/12

từng đó thì phải. Còn < 1/10 thì sai đề vì 7/12 > 1/10 mà.       Mình chỉ cm đc < 5/6 thôi

knight_Lucifer
23 tháng 4 2016 lúc 20:31

a, ta có 1/51 + 1/52 + 1/53 + 1/54.....+1/100 > 1/100 + 1/100 + 1/100+......+1/100

=> 1/51 +1/52 +......+1/100 > 50/100 =1/2 ( vì có 50 hạng tử)

tương tự 1/51 + 1/52 +1/53 ..........+1/100 < 1/51 + 1/51 + 1/51 +1/51......

=> 1/51 + 1/52 + 1/53....+1/100 < 50/51 <1 

nên ta suy ra điều phải cm

Nguyễn Lan Hương
Xem chi tiết
Em Sóc nhỏ
Xem chi tiết
Dũng Lê Trí
1 tháng 4 2018 lúc 20:30

a) \(\frac{1}{2}< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< 1\)

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}=\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}\right)+...+\left(\frac{1}{91}+\frac{1}{92}+...+\frac{1}{100}\right)\)\(\frac{1}{60}\cdot10< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}< \frac{1}{50}\cdot10\)

\(\frac{1}{6}< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}< \frac{1}{5}\)(1)

\(\frac{1}{70}\cdot10< \frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}< \frac{1}{60}\cdot10\)

\(\frac{1}{7}< \frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}< \frac{1}{6}\)(2)

.... (tương tự )

\(\frac{1}{100}\cdot10< \frac{1}{91}+\frac{1}{92}+...+\frac{1}{100}< \frac{1}{90}\cdot10\)

\(\frac{1}{10}< \frac{1}{91}+...+\frac{1}{100}< \frac{1}{9}\)

Dũng Lê Trí
1 tháng 4 2018 lúc 20:32

Từ (1)(2)(3)(4) và (5)

\(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\)

\(\frac{1}{2}< \frac{1624}{2520}< \frac{1}{51}+...+\frac{1}{100}\)

\(1>\frac{1879}{2520}>\frac{1}{51}+...+\frac{1}{100}\)

son goku
Xem chi tiết
Mai Trúc Linh
Xem chi tiết
ST
5 tháng 3 2017 lúc 21:34

Đăt S = \(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\)

S có 20 số hạng.Nhóm thành 2 nhóm,mỗi nhóm có 10 số hạng

Ta có: S = \(\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)\)

=> S < \(\left(\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)+\left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)\)

=> S < \(\frac{10}{20}+\frac{10}{30}\)

=> S < \(\frac{50}{60}=\frac{5}{6}\)       (1)

Lại có:S > \(\left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)+\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)\)

=> S > \(\frac{10}{30}+\frac{10}{40}\)

=> S > \(\frac{70}{120}=\frac{7}{12}\)        (2)

Từ (1) và (2) => \(\frac{7}{12}< \frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}< \frac{5}{6}\) (đpcm)

Nguyễn Việt Hoàng
14 tháng 5 2020 lúc 21:01

đpcm là gì vậy bạn

Khách vãng lai đã xóa
sukie chan sire
19 tháng 2 2022 lúc 15:35

điều phải chứng minh bạn ak

Khách vãng lai đã xóa