cho tam giac ABC vuong tai B ,AB = 6cm ,BC = 8cm , tren BD lay C sao cho BC= 3 cm.t d ke DX sao cho DX //AB cat AC tai E. tinh gocBAD , BAC
Cho tam giac ABC cantai A. Tren BC lay D va E sao cho BD=CE. Ke tia Dx vuong goc AB, ke tia Ey vuong goc AC, Dx cat Ey tai H
a/ CMR:Tam giac ABE= Tam giac ACD
b/CMR: HD = HE
c/ Goi O la giao diem cua CD va BE; tam giac OED la tam giac gi? chung minh
d/ CMR: AO la tia phan giac cua goc BAC?
e/ A, O , H thang hang.
Lam giup nhanh cho diem :<<
cho tam giac ABC vuong tai A , co canh AB=8cm , AC = 6cm. Tren tia doi tia CA lay diem E sao cho AE =AB. tren tia AB lay diem D (D thuoc AB; AD=AC. ke AH vuong goc BC, AH cat DE tai M.
Chung minh AM la trung tuyen tam giac ADE
GIẢI GIÚP MÌNH VỚI CHIỀU MÌNH THI GGGAAAAPPPP!!!!!!!!!!!!!!!!!!!!!!!!!
Cô hướng dẫn nhé :)
Ta thấy \(\Delta EAD=\Delta BAC\) (Hai cạnh góc vuông)
nên góc AED bằng góc ABC. Lại có góc ABC bằng góc CAM (cùng phụ góc ACB)
Vậy góc AED bằng góc MAE hay tam giác EMA cân tại M hay EM = MA.
Ta thấy góc MAD phụ góc MAC, góc MDA phụ góc MEA nên góc MAD bằng góc MDA, hay tam giác AMD cân tại M, từ đó MA = MD.
Tóm lại EM = MA = MD nên M là trung điểm ED, hay AM là trung tuyến cảu tam giác ACE.
Chúc em thi tốt :))
cho tam giac ABC vuong tai A co AB = 8cm, BC = 10cm a) Tinh AC, b) tren tia AC lay diem D sao cho AD = AC. Ve AE vuong goc BD tai E, ve AF vuong goc BC tai F. Chung minh tam giac ABE = tam giac ABF, c) Ve duong thang vuong goc BD tai D duong thang vuong goc BC tai C. Hai duong thang nay cat nhau ta M. Chung minh: tam giac MDC can, D) Chung minh: B,A, M thang hang
a, dễ tự làm
b, xét tam giác CAB và tam giác DAB có : AB chung
AC = AD (gt)
góc CAB = góc DAB = 90
=> tam giác CAB = tam giác DAB (2cgv)
=> góc CBA = góc DBA (đn)
xét tam giác AFB và tam giác AEB có : AB chung
góc AFB = góc AEB = 90
=> tam giác AFB = tam giác AEB (ch - gn)
Cho tam giac ABC vuong tai A ( AB<AC) ve duong cao AH (H thuoc BC)
A) cm tam giac ABH dong dang tam giac CBA suy ra AB binh =BH.BC
B) Cho AB =6cm , AC=8cm. Tinh BC .Tren canh BC lay diem E sao cho CE=4cm, cm BE binh =BH.HC
C) Tinh dien tich tam giac ABH
D) Duong phan giac cua goc AHB cat AB tai D duong phan giac cua goc AHC cat AC tai F duong thanh DF cat AH tai I va cat CB tai K. Cm DI .FK=DK.FI
A) Xét \(\Delta_VABH\) và \(\Delta_vCBA\):
\(\widehat{B}\): chung
\(\Rightarrow\Delta_vABH\sim\Delta_vCBA\left(gn\right)\)
B) Đề sai vì BC\(=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(\Rightarrow BE=10-4=6\left(cm\right)\)
\(AH=\frac{6.8}{10}=4,8\left(cm\right)\)
mà \(AH^2=BH.HC\) nên AH=BE
Vậy đề sai.
C) Có: \(BH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6\left(cm\right)\)
\(S_{ABH}=\frac{1}{2},3,6.4,8=8,64\left(cm^2\right)\)
cho tam giac ABC vuong tai A cos AB < AC tren bc lay diem m sao cho bm > cm tu M ke dg tg vuong goc bc dg tg cat ac tai h cat ba tai d
a cm tam giac CMH dong dang CAB
b biet ab 6cm ac 8cm ch 5cm tinh bc va hm
c goi I laf gd cua bh va CD . CMR
MBH dong dang MCD
CM Ac la tia pg IAM
cho tam giac ABC voi do dai 3canh la AB = 3cm , Bc=5cm, Ac= 4cm.
a) tam giac do la tam giac gi? vi sao ?
b) tren canh Bc lay diem D sao cho BA =BD. tu D ve Dx vuong goc voi BC (Dx cat AC tai H).Chung minh BH la tia phan giac goc ABC
c) Ve trung tuyen AM. chung minh tam giac ABM can
a) Ta có: BC2 = 52 = 25
AB2 + AC2 = 32 + 42 = 9 + 16 = 25
Suy ra: BC2 = AB2 + AC2
Do đó: \(\Delta ABC\) vuông tại A.
b) Xét hai tam giác vuông ABH và DBH có:
AB = BD (gt)
BH: cạnh huyền chung
Vậy: \(\Delta ABH=\Delta DBH\left(ch-cgv\right)\)
Suy ra: \(\widehat{ABH}=\widehat{DBH}\) (hai góc tương ứng)
Do đó: BH là tia phân giác của \(\widehat{ABC}\).
c) Ta có: AM = MB = MC = \(\dfrac{1}{2}.BC=\dfrac{1}{2}.5=\dfrac{5}{2}\) (cm) (theo định lí đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)
Do đó: \(\Delta ABM\) cân tại M (đpcm).
Cho tam giac ABC vuong tai A (AB<AC) ve duong cao AH (H thuoc BC)
A)cm tam giac ABH~tam giac CBA suy ra AB binh =BH.BC
B)cho AB=6cm, AC=8cm . Tinh BC.Tren canh BC lay diem E sao cho CE=4cm, cm BE binh=BH.HC
C) tinh dien tich tam giac ABH
D) Duong phan giac cua goc AHB cat AB tai D, duong phan giac cua goc AHC cat AC tai F, duong thang DF cat AH tai I va cat CB tai K.cm DI.FK=DK.FI
cho tam giac ABC vuong tai A(AB<AC). Tia phan giac cua goc B cat AC o E. TRen BC lay diem d sao cho BD=BA. Duong thang DE at duong thang AB tai F.
a, CM ED vuong gic voi BC
b,CMR tam giac BCF can tai b
c, Goi H la giao diem cua BE va FC. TINH BC biet BH=8cm, FC=12cm
d, CM AD song song voi FC
cho tam giac ABC vuong tai A. tren canh BC lay diem D sao cho BD=AB. qua D ke duong thang vuong goc voi BC, cat AC tai diem E va cat tia BA tai diem K
a) tinh so do goc ACB neu co ABC=35 do
b)chung minh ABE = tam giac DBE
c)chung minh EK=EC
d)chung minh EB+EK<CB+CK
câu d) dùng bất đẳng thức tam giác nhé!!!
54747
a) Xét tam giác vuông ABC có :
Góc ACB = \(90^o-35^o\)
Góc ACB = \(55^o\)
b) Xét tam giác ABE và tam giác DBE có
Góc BAE= góc BDE \(\left(=90^o\right)\)
AB = BD (giả thiết)
BE là cạnh chung
Do đó tam giác ABE = tam giác DBE (cạnh huyền - cạnh góc vuông)
c) Xét tam giác EKA và tam giác ECD có
góc KAE = góc CDE \(\left(=90^o\right)\)
EA = ED (tam giác ABE = tam giác DBE)
góc KEA = góc CED ( đối đỉnh )
Do đó tam giác EKA = tam giác ECD (cạnh góc vuông - góc nhọn)
\(\Rightarrow EK=EC\) (hai cạnh tương ứng)
d) Ta có:
tam giác ABE vuông nên góc AEB là góc nhọn
\(\Rightarrow\) góc BEC là góc tù
\(\Rightarrow\) CB>EB (trong tam giác tù cạnh đối diện với góc tù là cạnh lớn nhất) (1)
Ta lại có :
tam giác KAE vuông tại A nên góc KEA là góc nhọn
\(\Rightarrow\) góc KEC là góc tù
\(\Rightarrow\) CK>EK (trong tam giác tù cạnh đối diện với góc tù là cạnh lớn nhất) (2)
Từ (1) và (2) ta có
EB+EK<CB+CK (đpcm)