Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ai cx dc
Xem chi tiết
Nụ cười hạnh phúc
Xem chi tiết
Cô Hoàng Huyền
10 tháng 5 2016 lúc 10:31

A C B E D M H

Cô hướng dẫn nhé :)

Ta thấy \(\Delta EAD=\Delta BAC\) (Hai cạnh góc vuông)

nên góc AED bằng góc ABC. Lại có góc ABC bằng góc CAM  (cùng phụ góc ACB)

Vậy góc AED bằng góc MAE hay tam giác EMA cân tại M hay EM = MA.

Ta thấy góc MAD phụ góc MAC, góc MDA phụ góc MEA nên góc MAD bằng góc MDA, hay tam giác AMD cân tại M, từ đó MA = MD.

Tóm lại EM = MA = MD nên M là trung điểm ED, hay AM là trung tuyến cảu tam giác ACE.

Chúc em thi tốt :))

Devil
10 tháng 5 2016 lúc 8:38

A B C D E M H

Devil
10 tháng 5 2016 lúc 8:39

hình như sai đề thì phải

Ngo si hieu
Xem chi tiết
Seulgi
20 tháng 2 2019 lúc 17:14

a, dễ tự làm 

b, xét tam giác CAB và tam giác DAB có : AB chung

AC = AD (gt)

góc CAB = góc DAB = 90

=> tam giác CAB = tam giác DAB (2cgv) 

=> góc CBA = góc DBA (đn)

xét tam giác AFB và tam giác AEB có : AB chung

góc AFB = góc AEB = 90

=>  tam giác AFB = tam giác AEB (ch - gn)

Thien than
Xem chi tiết
Nguyen
24 tháng 3 2019 lúc 13:41

A) Xét \(\Delta_VABH\) và \(\Delta_vCBA\):

\(\widehat{B}\): chung

\(\Rightarrow\Delta_vABH\sim\Delta_vCBA\left(gn\right)\)

B) Đề sai vì BC\(=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(\Rightarrow BE=10-4=6\left(cm\right)\)

\(AH=\frac{6.8}{10}=4,8\left(cm\right)\)

mà \(AH^2=BH.HC\) nên AH=BE

Vậy đề sai.

C) Có: \(BH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6\left(cm\right)\)

\(S_{ABH}=\frac{1}{2},3,6.4,8=8,64\left(cm^2\right)\)

phu
Xem chi tiết
Mai
Xem chi tiết
Hải Ngân
16 tháng 6 2017 lúc 16:47

A B C D H M x

a) Ta có: BC2 = 52 = 25

AB2 + AC2 = 32 + 42 = 9 + 16 = 25

Suy ra: BC2 = AB2 + AC2

Do đó: \(\Delta ABC\) vuông tại A.

b) Xét hai tam giác vuông ABH và DBH có:

AB = BD (gt)

BH: cạnh huyền chung

Vậy: \(\Delta ABH=\Delta DBH\left(ch-cgv\right)\)

Suy ra: \(\widehat{ABH}=\widehat{DBH}\) (hai góc tương ứng)

Do đó: BH là tia phân giác của \(\widehat{ABC}\).

c) Ta có: AM = MB = MC = \(\dfrac{1}{2}.BC=\dfrac{1}{2}.5=\dfrac{5}{2}\) (cm) (theo định lí đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)

Do đó: \(\Delta ABM\) cân tại M (đpcm).

Thien than
Xem chi tiết
phan dai
Xem chi tiết
love tfboys and exo and...
Xem chi tiết
Oo Bản tình ca ác quỷ oO
17 tháng 4 2016 lúc 15:38

câu d) dùng bất đẳng thức tam giác nhé!!!

54747

Nguyên
17 tháng 4 2016 lúc 16:25

a) Xét tam giác vuông ABC có :

Góc ACB = \(90^o-35^o\)

Góc ACB = \(55^o\)

b) Xét tam giác ABE và tam giác DBE có 

            Góc BAE= góc BDE  \(\left(=90^o\right)\)

            AB = BD (giả thiết)

            BE là cạnh chung

Do đó tam giác ABE = tam giác DBE (cạnh huyền - cạnh góc vuông)

c) Xét tam giác EKA và tam giác ECD có

           góc KAE = góc CDE \(\left(=90^o\right)\)

            EA = ED (tam giác ABE = tam giác DBE)

            góc KEA = góc CED ( đối đỉnh )

Do đó tam giác EKA = tam giác ECD (cạnh góc vuông - góc nhọn)

\(\Rightarrow EK=EC\) (hai cạnh tương ứng)

d) Ta có: 

tam giác ABE vuông nên góc AEB là góc nhọn 

\(\Rightarrow\) góc BEC là góc tù 

\(\Rightarrow\) CB>EB (trong tam giác tù cạnh đối diện với góc tù là cạnh lớn nhất) (1)

Ta lại có :

tam giác KAE vuông tại A nên góc KEA là góc nhọn 

\(\Rightarrow\) góc KEC là góc tù 

\(\Rightarrow\) CK>EK  (trong tam giác tù cạnh đối diện với góc tù là cạnh lớn nhất) (2)

Từ (1) và (2) ta có 

EB+EK<CB+CK (đpcm)