giup minh voi x.\(\sqrt{x-1}\)-3 =0
Giup minh voi thanks
Lim\(\frac{x}{\sqrt{1+x}-1}\)(x=>0)
\(\lim\limits_{x\rightarrow0}\frac{x}{\sqrt{1+x}-1}=\lim\limits_{x\rightarrow0}\frac{x\left(\sqrt{1+x}+1\right)}{\left(\sqrt{1+x}-1\right)\left(\sqrt{1+x}+1\right)}=\lim\limits_{x\rightarrow0}\frac{x\left(\sqrt{1+x}+1\right)}{x}=\lim\limits_{x\rightarrow0}\left(\sqrt{1+x}+1\right)=2\)
tim x biet: (x-3)*(x-5)+1=0 giup minh voi. Arigato gozaimasu!
\(\left(x-3\right)\left(x-5\right)+1=0\)
\(\Leftrightarrow x^2-5x-3x+15+1=0\)
\(\Leftrightarrow x^2-8x+16=0\)
\(\Leftrightarrow\left(x-4\right)^2=0\)
\(\Leftrightarrow x-4=0\)
\(\Leftrightarrow x=4\)
Vậy \(x=4\)
\(\left(x-3\right)\left(x-5\right)+1=0\)
\(\Rightarrow x^2-3x-5x+15+1=0\)
\(\Rightarrow x^2-8x+16=0\)
\(\Rightarrow x^2-2x.4+4^2=0\)
\(\Rightarrow\left(x-4\right)^2=0\)
\(\Rightarrow x-4=0\)
\(\Rightarrow x=4\)
Vậy \(x=4\)
\(\left(x-3\right)\left(x-5\right)+1=0\)
\(\Leftrightarrow x^2-5x-3x+15+1=0\)
\(\Leftrightarrow x^2-8x+16=0\)
\(\Leftrightarrow\left(x-4\right)^2=0\)
\(\Leftrightarrow x=4\)
Giai phuong trinh giup minh 3 cau nay voi
a,\(3x\left(2-\sqrt{4}\right)=3\left(\sqrt{4}x+1\right)\)
b,\(\left(5-x\right).\left(\sqrt{3}+x\right)-5=0.\)
c,\(\left(x^2-2x\right)+\left(-4+8x\right)=0.\)
Voi gia tri nao cua x thi can thuc sau co nghia : \(\sqrt{\dfrac{-2}{x+1}}\)
moi nguoi giup minh cau nay voi , minh cam on!!
Để căn thức có nghĩa\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{2}{x+1}\ge0\\x+1\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+1\le0\\x+1\ne0\end{matrix}\right.\)\(\Leftrightarrow x+1< 0\Leftrightarrow x< -1\)
Vậy...
Tim x : x^3-x^2-x+1=0
Chung minh 2x-2x^2-1<0 voi moi x
Giup vs
Bài 1:
\(x^3-x^2-x+1=0\)
\(\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy x = 1 hoặc x = -1
Bài 2:
\(2x-2x^2-1=-2\left(x^2-x+\dfrac{1}{2}\right)\)
\(=-2\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4}\right)\)
\(=-2\left(x^2-\dfrac{1}{2}\right)^2-\dfrac{1}{2}< 0\)
\(\Rightarrowđpcm\)
Giup minh voi : cho P= \(\sqrt{x-1}\)+\(\sqrt{3-x}\)Tim GTLN,GTNN cua P
dk \(1\le x\le3\)
\(P^2=x-1+3-x+2\sqrt{\left(x-1\right)\left(3-x\right)}\) =\(2+2\sqrt{\left(x-1\right)\left(3-x\right)}\)
ta co \(p^2\ge2\Rightarrow p\ge\sqrt{2}\) dau = xay ra khi \(\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
\(P^2=2+2\sqrt{\left(x-1\right)\left(3-x\right)}\le2+x-1+3-x=4\) (ap dung bdt amgm)\(\Rightarrow p\le2\)
dau = xay ra khi \(x-1=3-x\Leftrightarrow x=2\)
kl min p= \(\sqrt{2}khi\orbr{\begin{cases}x=1\\x=3\end{cases}}\) maxp= 2 khix=2
\(\text{Đ}\text{ể}Pc\text{ó}ngh\text{ĩa}\Leftrightarrow\sqrt{x-1}\ge0\Leftrightarrow x-1\ge0\Leftrightarrow x\ge1\)>=1\(v\text{à}\sqrt{3-x}\ge0\Leftrightarrow3-x\ge0\Leftrightarrow x\le3\).\(x\ge1V\text{à}x\le3\Rightarrow PKh\text{ô}ngC\text{ó}Ngh\text{ĩa}\)
( x +1 ) + ( x + 3 ) + ( x + 5 )+ ... + ( x + 99 ) = 0
giup minh voi
ban nao lam duoc minh tick cho nhe
Có 1+3+5+...+99
dãy trên có (99-1):2+1=50 số số hạng
=> 50x +1+3+...+99=0
50x+(99+1).50:2=0
50x+2500=0
x=-50
tick nhé
(x+1)+(x+3)+(x+5)+................+(x+99) =0
x50 +(1+3+5+7+...+99) =0
x50 + 2500 =0
x50 =0-2500
x50 = -2500
x = -2500:50
x = -50
tim so nguyen x biet
a) (x + 3)(x - 1)<0
b) (x - 4)(x + 3)>0
GIUP MINH VOI
(x-3).(x-4)=h 0 giup minh voi