Tìm a,b thuộc N , biết
a. 24 < a < b < 27
b. 46 < a < b < 50
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a) Cho a, b, c thuộc N. Chứng tỏ rằng tổng 72a + 63b + 21c chia hết cho 3
b) Tìm a, b c, thuộc N sao cho 99a + 27b + 63c = 1236000
Tìm a, b, c thuộc N sao cho 99a + 27b+ 63c= 1236000
Không tồn tại a,b,c thuộc N để 99a+27b+63c=1236000
tick nha le thi khuyen
Tìm hai số nguyên tố a, b biết
a + b = 120 và ƯCLN ( a; b) = 24
ƯCLN(a,b)=24
=>\(\left\{{}\begin{matrix}a=24x\\b=24y\end{matrix}\right.\)
Ta có: a+b=120
=>24x+24y=120
=>x+y=5
=>\(\left(x,y\right)\in\left\{\left(0;5\right);\left(5;0\right);\left(1;4\right);\left(4;1\right);\left(2;3\right);\left(3;2\right)\right\}\)
=>\(\left(a,b\right)\in\left\{\left(0;120\right);\left(120;0\right);\left(24;96\right);\left(96;24\right);\left(48;72\right);\left(72;48\right)\right\}\)
mà a,b là các số nguyên tố
nên \(\left(a,b\right)\in\varnothing\)
CTR: 72a+63b+21c chia hết cho 3 (a,b,c \(\in\) N)
tìm a,b,c thuộc N: 99a+27b+63c = 1236000
A) 72; 63; 21 đều chia hết cho 3 nên 72a; 63b ; 21c đều chia hết cho 3
=> tổng 72a + 63b + 21c chia hết cho 3
b) 99; 27; 63 đều chia hết cho 9 nên 99a + 27b + 63c chia hết cho 9
Mà 1236000 không chia hết cho 9 (do tổng các chữ số bằng 12 không chia hết cho 9 )
=> không tồn tại a; b ; c thuộc N để 99a + 27b + 63c = 1236 000
Chứng minh:
a. 12a + 36b chia hết cho 12 với a,b thuộc N
b. 5a + 10b chia hết cho 5 với a,b thuộc N
c. 9a + 27b chia hết cho 9 với a,b thuộc N
#Giúpmìnhnhamấychế
Đặt thừa số chung cho các câu lần lượt là 12; 5; 9
Tìm a,b thuộc N , biết :
a: 24 < a < b < 27
b: 46 <a < b < 27
a: =>a=25; b=26
b: =>\(\left(a,b\right)\in\varnothing\)
Tìm a,b thuộc N sao cho :
UCLN(a,b) + BCNN(a,b) = 46
Tìm hai số a,b ϵ N, biết
a) ƯCLN(a, b) + BCNN(a, b) = 19
b) BCNN(a, b) - ƯCLN( a, b) = 5
c) BCNN(a, b) - ƯCLN(a, b) = 35
Lời giải:
a. Gọi $d=ƯCLN(a,b)$. Khi đó, đặt $a=dx, b=dy$ với $x,y$ là số tự nhiên, $x,y$ nguyên tố cùng nhau.
Khi đó: $BCNN(a,b)=dxy$
Theo bài ra: $d+dxy=19$
$\Rightarrow d(1+xy)=19$
Do $d, 1+xy$ đều là số tự nhiên nên có 2 TH xảy ra:
TH1: $d=1, 1+xy=19\Rightarrow d=1, xy=18$
Do $ƯCLN(x,y)=1$ nên $(x,y)=(1,18), (2,9), (9,2), (18,1)$
$\Rightarrow (a,b)=(dx, dy) +(1,18), (2,9), (9,2), (18,1)$
b,c bạn làm tương tự theo hướng của câu a nhé.
Thực hiện các phép tính:10+2.4^2 A. 42 B. 24 C. 26 D. 28 Thực hiện các phép tính:50-4.3^2 A. 14 B. 24 C. 86 D. 46
Lời giải:
$10+2.4^2=10+2.16=10+32=42$
Đáp án A
$50-4.3^2=50-4.9=50-36=14$
Đáp án A.