cho a,b,c,d thuộc Z; a>b>c>d>0.Chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\)thì a+d>b+c
\(\text{cho a,b,c,d thuộc z thỏa mãn a+b=c+d.chứng minh rằng a^2+b^2+c^2+d^2 l}\)cho a,b,c,d thuộc z thỏa mãn a+b=c+d.chứng minh rằng a^2+b^2+c^2+d^2
cho a/b < c/d (a;c thuộc Z, b;d thuộc N*). CM a/b < a+c/b+d < c/d
Bài 1: cho a,b,c,d thuộc z', >0 t/m : a+b=c+d=2015
Tìm max cua a/b +c/d
Bài 2: cho a,b,c,d thuộc z', >0 t/m : a+b=c+d=2016
Tìm min cua (a+b)/(a.c + b.c)
1) cho a,b,c,d thuộc Z. thỏa mãn a-(-b+d)=c
chứng tỏ rằng a+b = c+d
2) tìm x,y thuộc Z biet /x-24/+/y+8/
Cho 4 số nguyên a, b, c, d (b, d < 0) và (a, b) = (c, d) = 1
a) Chứng minh nếu a/b + c/d thuộc Z thì b=d
b) Tìm các số dương a, b, c thỏa 1/a + 1/b + 1/c thuộc Z
Cho a , b , c thuộc Z . CMR : ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d ) chia hết cho 12
cho các số hữu tỉ x=a/b , y=c/d , z=a+c/b+d ( a,b,c,d thuộc Z , b,d khác 0 ) CMR nếu x<y thì x<y<z
ĐỀ sai
a = 1 ; b = 4 ; c = 1 ; d = 2 ta có
\(\frac{1}{4}
Cho x = a/b, y = c/d, z = a+c/b+d (a, b, c,d thuộc Z; b, d >0). Chứng tỏ rằng nếu x<y thì x<z<y
cho các số hữu tỉ x=a/b,y=c/d. z=a+c/b+d(a,b,c,d thuộc Z;b,d >0).Chứng minh rằng nếu x<y thì x<z<y
+)Vì x<y
Suy ra a/b<c/d
Suy ra a.b+a.d<b.c+b.a
Suy ra a.(b+d)<b.(c+a)
Suy ra a/b<c+a/b+d
Suy ra a/b<c+a/b+d<c/d
Suy ra x<z<y