Chứng minh rằng: Nếu \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\) thì a =c hoặc a+b+c+d =0
Cho các số nguyên a,b,c,d ( a > b > c > d > 0). Chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\)thì a + d > b + c
Cho a,b,c,d thuộc Z (b>0,d>0).CMR nếu \(\frac{a}{b}<\frac{c}{d}\) thì\(\frac{a}{b}<\frac{a+b}{c+d}<\frac{c}{d}\)
cho a, b, c, d thuộc Z và b > 0 ; d > 0 . chứng minh rằng
a)nếu a/b = c/d thì ad=cb và ngược lại
b) nếu a/b >c/d thì ad > cb và ngược lại
c) nếu a/b < c/d thì ad < cb và ngược lại
Cho bốn số \(a;b;c;d\in Z\)Chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\)thì\(\frac{a+b-c-d}{a-b-c+d}-\frac{2\left(b+d\right)}{\left(a+c\right)+\left(b+d\right)}=1\)
Cho a,b,c,d thuộc Z và \(\frac{a}{b}< \frac{c}{d}\). Chứng minh rằng :
\(\frac{2018\cdot a+c}{2018\cdot b +d}< \frac{c}{d}\)
cho a,b,c,d thuộc Z (b>0,d>0) CMR nếu\(\frac{a}{b}\) <\(\frac{c}{d}\) thì\(\frac{a}{b}<\frac{a+c}{b+d}<\frac{c}{d}\)
Cho 4 số nguyên a, b, c, d (b, d < 0) và (a, b) = (c, d) = 1
a) Chứng minh nếu a/b + c/d thuộc Z thì b=d
b) Tìm các số dương a, b, c thỏa 1/a + 1/b + 1/c thuộc Z
Chứng minh rằng nếu\(\frac{a}{b}=\frac{c}{d}\left(a,b,c,d\ne0\right)\)thì
a,\(\frac{a-b}{a}=\frac{c-d}{c}\)
b,\(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)