Cho \(x+y=4\) và \(x-4=2\). Tính \(xy\) và \(x^3-y^3\).
cho x+y=1 và xy =-1 tính x^3 +y^3
2. cho x+y = 1 tính giá trị biểu thức : Q=2(x^3 +y^3 )-3(x^2 +y^2)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=\left(x+y\right)^2-3xy=1+3=4\)
\(Q=2\left(x+y\right)\left(x^2-xy+y^2\right)-3\left(x^2+y^2\right)=-\left(x+y\right)^2=-1\)
x^3 +y^3
=(x+y)^3
=1
Q=2(x^3 +y^3 )-3(x^2 +y^2)
=2(x+y)^3-3(x+y)^2
Thay x+y=1 vào đa thức Q có:
=2.1-3.1
=-1
a) Cho \(x+y=1\) và \(xy=-6\). Tính \(x^2+y^2;x^3+y^3;x^5+y^5\).
b) Cho \(x-y=1\) và \(xy=6\).Tính \(x^2-y^2;x^3-y^3;x^5-y^5\).
a,
\(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\cdot\left(-6\right)=1-\left(-12\right)=13\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=1\cdot\left[13-\left(-6\right)\right]=19\)
\(x^5+y^5=\left(x+y\right)\left(x^2+y^2\right)^2-\left(2x^3y^2+xy^4+x^4y+2x^2y^3\right)=169-\left[2\left(xy\right)^2\left(x+y\right)+xy\left(x^3+y^3\right)\right]=169-\left[2\cdot36\cdot1-6\cdot19\right]=211\)
b,
\(x^2+y^2=\left(x-y\right)^2+2xy=1+12=13\)
\(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=1\cdot\left(13+6\right)=19\)
cho x+y=3 và xy=1. tính A= x^3y+xy^3
Ta có : \(A=x^3y+xy^3=xy\left(x^2+y^2\right)=xy\left[\left(x+y\right)^2-2xy\right]\)
Thay x+y=3 và xy=1 vào ta có : \(A=3^2-2=7\)
Vậy A=7
Ta có: \(A=x^3y+xy^3=xy\left(x^2+y^2\right)\)
\(=xy\left[\left(x+y\right)^2-2xy\right]\)
Thay \(x+y=3\)và \(xy=1\)vào, ta đc:
\(A=3^2-2=7\)
Vậy ta tìm đc \(A=7\)
Rất vui vì giúp đc bạn !!!
Cho x , y , z TLT vs 2 , 3 , 4 ; x,t TLN vs 1/3 , -2 và x + y + z - 2t = 4. Tính x/2 + y/3 - z + t
Cho x , y , z TLT vs 2 , 3 , 4 ; x,t TLN vs 1/3 , -2 và x + y + z - 2t = 4. Tính x/2 + y/3 - z + t
1. Cho các số dương x,y thỏa mãn :
x2010 + y2010= x2011 + y2011 = x2012 + y2012.
Tính x2016 + y2016.
2.Tìm các số x,y thỏa mãn : 2x2 + y2 -2y = 2(xy-1)
3.Cho y>x>0 và \(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\). Tính giá trị biểu thức: A= \(\dfrac{x-y}{x+y}\)
4. Cho phân thức \(P=\dfrac{x^2+2y^2}{2x+3y+4}\). Với giá trị nào của x và y thì P=0.
theo đầu bài ta có\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\)=>\(3x^2+3y^2=10xy\)
A=\(\dfrac{x-y}{x+y}\)
=>\(A^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}=\dfrac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\dfrac{10xy-6xy}{10xy+6xy}=\dfrac{4xy}{16xy}=\dfrac{1}{4}\)
=>A=\(\sqrt{\dfrac{1}{4}}=\dfrac{-1}{2}hoặc\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\) (cộng trừ căn 1/4 nhé)
vì y>x>0=> A=-1/2
Tìm x, y, z
x/3 =y/4 và xy =300
x/2 = y/3 = z/a và xyz =240
đặt x/3=y/4=k
=>x=3k
y=4k
=>xy=3k.4k=12.k^2 =300
=>k^2 =25
=>k=5
=>x=5.3=15
y=5.4=20
b)chờ chút
a, ta co\(\frac{x}{3}=\frac{y}{4}=>\frac{x^2}{9}=\frac{x}{3}.\frac{y}{4}=\)\(\frac{300}{12}=25\)
=> x= 15=> y=10
a,.Cho x+y=2 và \(x^2+y^2=8\).tính giá trị M=\(x^3+x^4+y^3+y^4\)
b,cho x+y=5.tính giá trị của M=\(x^2+y^2+2xy-4x-4y+3\)3
a, \(x^2+y^2=8\Rightarrow\left(x+y\right)^2-2xy=8\Rightarrow xy=\frac{8-\left(x+y\right)^2}{-2}=\frac{8-4}{-2}=-2\)
=>\(M=x^3+x^4+y^3+y^4=\left(x+y\right)^3-3xy\left(x+y\right)+\left(x^2+y^2\right)^2-2x^2y^2\)
\(=2^3-3.\left(-2\right).2+8^2-2.\left(-2\right)^2=76\)
b, \(M=x^2+y^2+2xy-4x-4y+3=\left(x+y\right)^2-4\left(x+y\right)+4-1=\left(x+y-2\right)^2-1=\left(5-2\right)^2-1=8\)
a, Cho x+y=2 và x2+y2=10. Tính giá trị của biểu thức x3+y3
b, Cho x+y=a và x2+y2=b. Tính x3+y3 theo a và b
a,Từ x + y = 2\(\Rightarrow\)x2 + 2xy + y2 = 4
\(\Rightarrow\)2xy= 4 - (x2 + y2 ) = 4 - 10 = -6
\(\Rightarrow\)xy = -3
Ta lại có (x+y)3= x3+3x2y + 3xy2+y3
\(\Rightarrow\)x3+y3=(x+y)3-3xy(x+y)=8+9.2=26
b, Đây là cách giải tổng quát của câu a:
x3+y3=(x+y)(x2-xy+y2)=a(b-xy) (1)
Lại có: x+y=a\(\Rightarrow\)x2+2xy+y2=a2
\(\Rightarrow\)xy=\(\dfrac{a^2-\left(x^2+y^2\right)}{2}=\dfrac{a^2-b}{2}\)(2)
Từ (1) và (2) ta dễ dàng tính được:
x3+y3=\(\dfrac{a\left(3b-a^2\right)}{2}\)
Chúc các bạn học tốt
a) x + y = 2 => y = 2 - x
x2 + y2 = 10
=> x2 + (2 - x)2 = 10
<=> x2 + 4 - 4x + x2 = 10
<=> 2x2 - 4x - 6 = 0
<=> x = 3 -> y = -1
hoặc x = -1 -> y = 3
TH1: x3 + y3 = 33 + (-1)3
TH2: x3 + y3 = (-1)3 + 33