Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyệt Nguyệt
Xem chi tiết
Nguyễn Thế Mãnh
8 tháng 1 2017 lúc 18:11

S = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...\frac{1}{2^{2012}}+\frac{1}{2^{2013}}\)

2S = \(1+\frac{1}{2^1}+\frac{1}{2^2}+...\frac{1}{2^{2011}}+\frac{1}{2^{2012}}\)

S = 2S - S = \(\left(1+\frac{1}{2^1}+\frac{1}{2^2}+...\frac{1}{2^{2011}}+\frac{1}{2^{2012}}\right)\) - \(\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...\frac{1}{2^{2012}}+\frac{1}{2^{2013}}\right)\)

S = 1 - \(\frac{1}{2013}\)

Vì 1 trừ cho số nào lớn hơn 0 thì hiệu đó cũng bé hơn 1

=> S < 1 (đpcm)

Nguyen thi quynh anh
5 tháng 3 2019 lúc 20:42

S=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2013}}\)

2S=\(1+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)

S=2S-S=(\(1+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\))-(\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2013}}\))

S=1-\(\frac{1}{2013}\)

Vì 1 trừ cho số nào lớn hơn 0 thì hiệu đó cũng bé hơn 1

=>S<1

Trần Lâm Thiên Hương
Xem chi tiết
Trần Quốc Đạt
8 tháng 1 2017 lúc 17:24

Giả sử có tấm bìa diện tích 1.

Ta cắt ra 1/2 tấm bìa, lấy đi 1 phần, rồi lại cắt ra 1/2 tấm còn lại (tức là 1/4), rồi lấy đi một phần...

Cứ làm như vậy 2013 lần thì ta đã lấy đi một diện tích \(S\), nhưng vẫn còn một góc bìa chưa bị lấy đi.

Vậy \(S< 1\)

Đỗ Ngọc Huyền
Xem chi tiết
Đoàn Đức Hà
24 tháng 8 2021 lúc 16:34

\(S=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2012^2}\)

\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2011.2012}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(=2-\frac{1}{2012}< 2\)

mà \(S>1\)

do đó ta có đpcm. 

Khách vãng lai đã xóa
Trần Quốc An
Xem chi tiết
JOKER_Võ Văn Quốc
10 tháng 6 2016 lúc 9:01

sorry,quá dài

Louis Pasteur
10 tháng 6 2016 lúc 9:11

Đề bài 7 có sai gì không bạn?

Cô Hoàng Huyền
10 tháng 6 2016 lúc 10:27

Trần Quốc An: Em hãy tách bài ra để dễ trả lời hơn nhé. Em gửi từng bài đi để cô hướng dẫn :)

Nguyễn Dương
Xem chi tiết
Phan The Anh
26 tháng 4 2016 lúc 21:22

c)\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2012}}\)

\(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{2012}}\right)\)

\(2A=2+1+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2011}}\)

\(2A-A=\left(2+1+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....\frac{1}{2^{2012}}\right)\)

\(A=2-\frac{1}{2^{2012}}\)

Nguyễn Thanh Huyền
26 tháng 4 2016 lúc 21:08

1/

A=1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100

A=1/1-1/100

Vì 1/100>0

-->1/1-1/100<1

-->A<1

Phan The Anh
26 tháng 4 2016 lúc 21:11

a)\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{1}-\frac{1}{100}\)=\(\frac{99}{100}<1\)

Nguyễn Thủy Nhi
Xem chi tiết
Yuu Shinn
10 tháng 4 2016 lúc 17:24

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2011.2012}\)

\(A<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(A<1-\frac{1}{2012}=\frac{2011}{2012}<1\)

\(A<1\) (ĐPCM)

Đ/s: ĐPCM

Tích nha Nguyễn Thủy Nhi

Phạm Thị Phương Lam
Xem chi tiết
Trần Thanh Phương
17 tháng 5 2019 lúc 20:43

Xét thấy : \(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};...;\frac{1}{2013^2}< \frac{1}{2012\cdot2013}\)

Khi đó : \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2013^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2012\cdot2013}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2012}-\frac{1}{2013}\)

\(=1-\frac{1}{2013}< 1\)

Hay \(A< 1\)

Hợp Phạm Bá
Xem chi tiết
hoang bao nhi
Xem chi tiết
Đào An Nguyên
26 tháng 7 2015 lúc 8:45

Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}