\(\left(x-30\right)+\left(x-29\right)+...+110+111=111\)
Tìm \(x\), biết rằng :
a) \(3.\left(10.x\right)=111\)
b) \(3.\left(10+x\right)=111\)
c) \(3+\left(10.x\right)=111\)
d) \(3+\left(10+x\right)=111\)
a) \(3.\left(10.x\right)=111\)
\(10.x=37\)
\(x=\dfrac{37}{10}\)
b) \(3.\left(10+x\right)=111\)
\(10+x=37\)
\(x=27\)
c) \(3+\left(10.x\right)=111\)
\(10.x=108\)
\(x=\dfrac{54}{5}\)
d) \(3+\left(10+x\right)=111\)
\(x=111-3-10\)
\(x=98\)
Cho \(f\left(x\right)=\frac{x^3}{3x^2-3x+1}\)
Tính giá trị của biểu thức sau:
\(A=f\left(\frac{1}{112}\right)+f\left(\frac{2}{112}\right)+.............+f\left(\frac{110}{112}\right)+f\left(\frac{111}{112}\right)-\frac{1}{2}\)
Ta có:\(f\left(x\right)-1=\left(x-1\right)^3\)
\(=>A+\frac{1}{2}=\left(\frac{1}{112}-1\right)^3+\left(\frac{2}{112}-1\right)^3+\left(\frac{3}{112}-1\right)^3+...\left(\frac{111}{112}-1\right)^3\)
\(A+\frac{1}{2}=-\frac{1^3+2^3+3^3+...+111^3}{112^3}=-\frac{\frac{111^2\left(111+1\right)^2}{4}}{112^3}=-\frac{111^2}{4\cdot112}=-\frac{12321}{448}\)
\(A=-\frac{12321}{448}-\frac{1}{2}=-\frac{12545}{448}\)
cho \(a\)và \(1-a\), ta có:
\(f\left(1-a\right)=\frac{\left(1-a\right)^3}{3\left(1-a\right)^2-3\left(1-a\right)+1}=\frac{\left(1-a-1\right)^3}{3-6a+a^2-3+3a+1}+1=1-\frac{a^3}{3a^3-3a+1}=1-f\left(a\right)\)
hay \(f\left(a\right)+f\left(1-a\right)=1\)
\(=>A=f\left(\frac{1}{112}\right)+f\left(\frac{111}{112}\right)+f\left(\frac{2}{112}\right)+f\left(\frac{110}{112}\right)+...+f\left(\frac{55}{112}\right)+f\left(\frac{57}{112}\right)+f\left(\frac{56}{112}\right)-\frac{1}{2}\)
\(=>A=55+f\left(\frac{1}{2}\right)-\frac{1}{2}=55\) vì \(f\left(\frac{1}{2}\right)+f\left(\frac{1}{2}\right)=2f\left(\frac{1}{2}\right)=1\)nên \(f\left(\frac{1}{2}\right)=\frac{1}{2}\)
Vậy \(A=55\)
Tìm x,y nguyên dương t/m \(3^x+111=\left(y-3\right)\left(y-5\right)\)
Tính:
\(P=\left(1-\frac{1}{111}\right)\left(1-\frac{2}{111}\right)\left(1-\frac{3}{111}\right)...\left(1-\frac{2009}{111}\right)\)
tìm x, y nguyên dương thỏa mãn \(3^x+111=\left(y-3\right)\left(y-5\right)\)
\(3^x+111=\left(y-3\right)\left(y-5\right)\)
\(3^x+111=y\left(y-5\right)-3\left(y-5\right)\)
\(3^x+111=y^2-5y-3y+15\)
\(3^x+111=y^2-8y+15\)
\(3^x+111-15=y^2-8y\)
\(3^x+96=y^2-8y\)
\(3\left(3^{x-1}+32\right)=y\left(y-8\right)\)
=> \(\hept{\begin{cases}y=3\\3^{x-1}+32=y-8\end{cases}}\)hoặc \(\hept{\begin{cases}y-8=3\\3^{x-1}+32=y\end{cases}}\)
=> \(\hept{\begin{cases}y=3\\3^{x-1}+32=3-8=-5\end{cases}}\)hoặc \(\hept{\begin{cases}y=3+8=11\\3^{x-1}+32=11\end{cases}}\)
=> \(\hept{\begin{cases}y=3\\3^{x-1}=-5-32=-37\end{cases}}\)hoặc \(\hept{\begin{cases}y=11\\3^{x-1}=11-32=-21\end{cases}}\)
.............................................................................................................................................................
=> \(x,y\in\varnothing\)
.............................................................................................................................................................
hình như mình làm lộn rồi .............................
cái chỗ => ấy mình lộn
SORRY
\(B=-5\left(3x+2\right)^4-\left(x+2y\right)^2+111\) lớn nhất
\(B=-5\left(3x+2\right)^4-\left(x+2y\right)^2+111\)
Ta có :
\(\left(3x+2\right)^4\ge0\Rightarrow-5\left(3x+2\right)^4\le0\left(1\right)\)
\(\left(x+2y\right)^2\ge0\Rightarrow-\left(x+2y\right)^2\le0\left(2\right)\)
Từ (1)(2) \(\Rightarrow-5\left(3x+2\right)^4-\left(x+2y\right)^2\le0\)
\(\Rightarrow-5\left(3x+2\right)^4-\left(x+2y\right)^2+111\le111\)
Dấu = xảy ra khi \(\left\{{}\begin{matrix}5\left(3x+2\right)^4=0\\\left(x+2y\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+2=0\\x+2y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\-\dfrac{2}{3}+2y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
Vậy B đạt GTLN bằng 11 khi \(x=-\dfrac{2}{3};y=\dfrac{1}{3}\)
\(A=-5\left(3x+2\right)^4-\left(x+2y\right)^2+111\le111\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}-5\left(3x+2\right)^4=0\\-\left(x+2y\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
Tính giá trị của biểu thức sau:A=\(\frac{1\cdot111+2\cdot110+1\cdot109+...+111\cdot1}{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+111\right)}\)
Tìm x thỏa mãn:
a) (x-30)+(x-29)+...+110+111=111
b) /x+1/+/x+2/+...+/x+100/=101x (Chú ý: /a/ là giá trị tuyệt đối của a)
Ai làm xong đầu tiên mình tk cho!
a,(a-30)+(x-29)+...+110=0
(=)\(\frac{(110+x-30)}{x}=0\)
(=)\(80+x=0\)
(=)=-80
Tìm GTNN của:F= -111+|x-3| +|x+7|
G=\(\frac{18}{25}+\left(x+y+3\right)^{2014}+\left(y-z+1\right)^{2016}+\left|x-2\right|\)
Giúp tớ nha!!!!!!!!!!!!!!
MINF=-111
MING=18/25
để ý các đẳng thức có dấu gttđ luôn > 0 thôi