Cho a+b>=1 ,a>0.Tìm gtnn của M= (8a^2+b)/4a +b^2
Cho a,b>0 thỏa mãn \(a+b\ge1\)
Tìm GTNN của \(Q=\dfrac{8a^2+b}{4a}+b^2\)
Xét \(a+b\ge1\Leftrightarrow b\ge1-a\)
Xét \(Q\ge\dfrac{8a^2+1-a}{4a}+\left(1-a\right)^2=\dfrac{8a^2}{4a}+\dfrac{1}{4a}-\dfrac{a}{4a}+1-2a+a^2\)
\(=2a+\dfrac{1}{4a}-\dfrac{1}{4}+1-2a+a^2\)\(=a^2+\dfrac{1}{4a}+\dfrac{3}{4}\)\(=\left(a^2+\dfrac{1}{8a}+\dfrac{1}{8a}\right)+\dfrac{3}{4}\)
Áp dụng Cosi được \(Q\ge3\sqrt[3]{a^2\cdot\dfrac{1}{8a}\cdot\dfrac{1}{8a}}+\dfrac{3}{4}\)\(=3\sqrt[3]{\dfrac{1}{64}}+\dfrac{3}{4}=\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{3}{2}\)
Vậy \(Qmin=\dfrac{3}{2}\) khi \(a=b=\dfrac{1}{2}\)
Cho hai số thực a,b thỏa mãn a+b>=1 và 0<a<1.Tìm GTNN của A=\(\frac{8a^2+b}{4a}+b^2\)
Do \(0< a< 1\Rightarrow b>0\)
\(A=2a+\frac{b}{4a}+b^2=\frac{3a}{2}+\frac{a}{2}+\frac{b}{4a}+b^2\ge\frac{3a}{2}+3\sqrt[3]{\frac{ab^3}{8a}}=\frac{3}{2}\left(a+b\right)\ge\frac{3}{2}\)
\(A_{min}=\frac{3}{2}\) khi \(a=b=\frac{1}{2}\)
a+b>=1 và a>0
tìm gtnn \(A=\frac{8a^2+b}{4a}+b^2\)
\(A=2a+\frac{b}{4a}+b^2\)
Mà \(a+b\ge1\Leftrightarrow b\ge1-a\). Suy ra \(A\ge2a+\frac{1-a}{4a}+b^2=2a+\frac{1}{4a}-\frac{1}{4}+b^2=a+\frac{1}{4a}+a+b^2-\frac{1}{4}\)
Mà \(a+b\ge1\Leftrightarrow a\ge1-b\). Suy ra
\(A\ge a+\frac{1}{4a}+b^2-b+\frac{3}{4}=a+\frac{1}{4a}+b^2-b+\frac{1}{4}+\frac{1}{2}\)
Áp dụng bđt Cosi: \(\Rightarrow A\ge2+\left(b-\frac{1}{2}\right)^2+\frac{1}{2}\Leftrightarrow A\ge\frac{3}{2}\)
Dấu = xảy ra tại a=b=1/2
Cho hai số a. b thỏa mãn điều kiện \(a+b\ge1\) và 1>a>0
Tìm GTNN của biểu thức \(\frac{8a^2+b}{4a}+b^2\)
\(\frac{8a^2+b}{4a}+b^2=2a+\frac{b}{4a}+b^2=a+a+\frac{b}{4a}+b^2\)
\(\ge a+1-b+\frac{1-a}{4a}+b^2=a+1-b+\frac{1}{4a}-\frac{1}{4}+b^2\)(do \(a+b\ge1\))
\(=\left(a+\frac{1}{4a}\right)+b^2-b+\frac{1}{4}+\frac{1}{2}\)
\(\ge2\sqrt{a\cdot\frac{1}{4a}}+\left(b-\frac{1}{2}\right)^2+\frac{1}{2}\)
\(\ge2\cdot\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)
Dấu = khi \(a=b=\frac{1}{2}\)
Cho a, b là số thực dương thỏa mãn a + b \(\ge1\)
Tìm GTNN: A = \(\dfrac{8a^2+b}{4a}+b^2\)
Bạn tham khảo:
Cho hai số thực a;b thay đổi thỏa mãn điều kiện \(a b\ge1\) và \(a>0\) Tìm GTNN của \(A=\frac{8a^2 b}{4a} b^2\) - Hoc24
Cho 2 số thực a,b thay đổi thỏa mãn đk : a + b >= 0; 1>a>0
Tính GTNN của A=\(\frac{8a^2+b}{4a}\)+ b\(^2\)
cho 2 số a,b thỏa mãn: \(a+b>1\), a>0
tìm GTNN của \(A=\frac{8a^2+b}{4a}+b^2\)
Cho hai số thực a;b thay đổi thỏa mãn điều kiện \(a+b\ge1\) và \(a>0\)
Tìm GTNN của \(A=\frac{8a^2+b}{4a}+b^2\)
\(A=2a+\frac{b}{4a}+b^2=a+a+\frac{b}{4a}+b^2\)
\(A\ge a+1-b+\frac{1-a}{4a}+b^2\)
\(A\ge a+\frac{1}{4a}+b^2-b=a+\frac{1}{4a}+\left(b-\frac{1}{2}\right)^2-\frac{1}{4}\)
\(A\ge a+\frac{1}{4a}-\frac{1}{4}\ge2\sqrt{\frac{a}{4a}}-\frac{1}{4}=\frac{1}{4}\)
\(A_{min}=\frac{1}{4}\) khi \(\left\{{}\begin{matrix}a=\frac{1}{2}\\b=\frac{1}{2}\end{matrix}\right.\)