Cho tam giác nhọn ABC. Vẽ về phía ngoài tam giác các tam giác ABD; ACE vuông cân tại A. Vẽ đường cao AH của tam giác ABC. C/m AH đi qua trung điểm O của DE
cho tam giác ABC nhọn,vẽ về phía ngoài tam giác ABC các tam giác vuông cân tại A là ABD và ACE.a.Chứng minh rằng:DC=BE.b.Chứng minh rằng:DC vuông góc với BE
a: Xét ΔABE và ΔADC có
AB=AD
góc BAE=góc DAC
AE=AC
=>ΔABE=ΔADC
=>BE=DC
b: Gọi giao của DC và BE là H
góc HBC+góc HCB
=góc ABC-góc ABE+góc ACB-góc ACD
=180 độ-góc BAC-góc ADC-góc ACD
=góc DAC-góc BAC=góc DAB=90 độ
=>DC vuông góc BE
Cho tam giác ABC có góc A nhọn, phía ngoài tam giác vẽ các tam giác vuông cân tại A là ABD, ACE. Gọi M là trung điểm của BC. Cm AM = 1/2 DE và AM vuông góc DECho tam giác ABC có góc A nhọn, phía ngoài tam giác vẽ các tam giác vuông cân tại A là ABD, ACE. Gọi M là trung điểm của BC. Cm AM = 1/2 DE và AM vuông góc DECho tam giác ABC có góc A nhọn, phía ngoài tam giác vẽ các tam giác vuông cân tại A là ABD, ACE. Gọi M là trung điểm của BC. Cm AM = 1/2 DE và AM vuông góc DE
Tam giác ABC nhọn. Vẽ về phía ngoài tam giác giác các tam giác vuông cân ABD,tam giác ACE tại A.CMR : trung tuyến AM của tam giác ADE vuông góc với BC
Cho tam giác ABC có 3 góc nhọn. Về phía ngoài của tam giác ABC ta vẽ các tam giác đều ABD và ACE. I là trực tâm của tam giác ABC, H là trung điểm của BC. Tính góc IEH
có 3 tam giác thì lấy 3 tam giác đó ghép lại
Bài 1: Cho tam giác ABC nhọn. Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:
a. Tam giác ABE bằng tam giác ADC
b. Góc BMC bằng 120
a:
góc BAE=góc BAC+góc CAE=góc BAC+60 độ
góc CAD=góc CAB+góc BAD=góc BAC+60 độ
=>góc BAE=góc CAD
Xét ΔABE và ΔADC có
AB=AD
góc BAE=góc DAC
AE=AC
=>ΔABE=ΔADC
b: ΔABE=ΔADC
=>góc ABE=góc ADC
=>góc ABM=góc ADM
Xét tứ giác ADBM có
góc ABM=góc ADM
=>ADBM là tứ giác nội tiếp
=>góc DMB=góc DAB=60 độ
góc DMB+góc BMC=180 độ(kề bù)
=>góc BMC=180-60=120 độ
Cho tam giác ABC nhọn (AB<AC). Vẽ về phía ngoài tam giác ABC các tam giác vuông cân tại A là ABD, ACE và hình bình hành ADKE. Chứng minh:
a. KA=BC
b. KA vuông góc BC
cho tam giac ABC có góc A nhọn. Vẽ về phía ngoài của tam giác ABC các tam giác đêu ABD và tam giác ACE. Gọi M,N lần lượt là trung điểm của BE và CD. Chứng minh tam giác AMN đều
( GT, KL bạn tự viết nha )
Cho tam giác ABC nhọn. Vẽ về phía ngoài tam giác đó các tam giác đều ABD và ACE. Gọi H là giao điểm của BE và CD. Tính số đo góc BHC
cho tam giác nhọn ABC. Vẽ phía ngoài tam giác ABC các tam giác đều ABD VÀ ACE. Gọi M là giao điểm DC và BE. Chứng minh:
a, tam giác ABE =TAM GIÁC ADC
b, BMC=1200
Xin lỗi hơi muộn vì máy điện thoại bị truc trặc:vv