Cho tam giác ABC trên nửa mặt phẳng bờ BC không chứa điểm B vẽ điểm D sao cho BC = AD. M ;N;P;Q theo thứ tự là trung điểm của AC;BD;AB;CD.CMR :NM vuông góc với PQ
Cho tam giác ABC. Trên nửa mặt phẳng không chứa điểm C có bờ là đường thẳng AB, vẽ tia AD sao cho B A D ^ = A B C ^ . Trên nửa mặt phẳng không chứa điểm B có bờ là đường thẳng AC, vẽ tia AE sao cho C A E ^ = A C B ^ . Chứng minh.:
a) AD song song với BC;
b) Ba điểm D, A, E thẳng hàng
a) Có B A D ^ = A B C ^ ( giả thiết),
Mà hai góc ở vị trí so le trong nên AD // BC (theo tính chất hai đường thẳng song song).
b) Tương tự ý a), chứng minh được AE // BC
Theo tiên đề ơ-clit, hai đường thẳng AE và AD trùng nhau. Từ đó ba điểmD, A, E thẳng hàng.
Cho tam giác ABC. Trên nửa mặt phẳng không chứa điểm C có bờ là đường thẳng AB, vẽ tia AD sao cho B A D ^ = A B C ^ . Trên nửa mặt phẳng không chứa điểm B có bờ là đường thẳng AC, vẽ tia AE sao cho C A E ^ = A C B ^ . Chứng minh.:
a) AD song song với BC;
b) Ba điểm D, A, E thẳng hàng
a) Có B A D ^ = A B C ^ ( giả thiết),
Mà hai góc ở vị trí so le trong nên AD // BC (theo tính chất hai đường thẳng song song).
a) Tương tự ý a), chứng minh
b) được AE // BC
Theo tiên đề ơ-clit, hai đường thẳng AE và AD trùng nhau. Từ đó ba điểm D, A, E thẳng hàng
Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C có bờ AB, vẽ tia Ax vuông góc với AB, trên tia đó lấy điểm D sao cho AD=AB. Trên nửa mặt phẳng không chứa B có bờ AC, vẽ tia Ay vuông góc với AC, trên tia đó lấy điểm E sao cho AE=AC. Chứng minh rằng:
a) AM=DE/2
b)AM vuông góc DE
Cho tam giác ABC. M là trung điểm của BC. Trên nửa mặt phẳng không chứa C có bờ AB, vẽ tia Ax vuông góc với AB, trên tia đó lấy điểm D sao cho AD=AB. Trên nửa mặt phẳng không chứa B có bờ AC, vẽ tia Ay vuông góc với AC, trên tia đó lấy điểm E sao cho AE=AC. Chứng minh rằng:
a) AM=DE/2
b)AM vuông góc DE
Bài 4. Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C có bờ AB, vẽ tia Ax vuông góc với AB, trên tia đó lấy D sao cho AD=AB. Trên nửa mặt phẳng không chứa B có bờ AC, vẽ tia Ay vuông góc với AC, trên tia đó lấy E sao cho AE=AC
Chứng minh rằng
a )AM=1/2DE
b)AM vuông góc với DE
a) Trên tia đối tia MA lấy điểm F sao cho AM = AF (*)
Xét tam giác BFM và tam giác ACM có:
AM = FM (theo *)
Góc BMF = góc AMC (2 góc đối đỉnh)
BM = CM (vì M là trung điểm của BC)
=> Tam giác BFM = tam giác CAM (c.g.c)
=> AC = BF (2 cạnh tương ứng)
Vì AC = AE (gt) nên AE = BF
Ta có: góc F = góc CAM (vì tam giác BFM = tam giác CAM)
Mà 2 góc này ở vị trí so le trong
=> BF // AC (dấu hiệu nhận biết)
=> Góc BAC + góc ABF = 180 độ (2 góc trong cùng phía)
Mà góc BAC + góc DAE = 180 độ
=> Góc DAE = góc ABF
Xét tam giác ABF và tam giác ADE có:
AB = AD (gt)
Góc DAE = góc ABF (chứng minh trên)
AE = BF (2 cạnh tương ứng)
=> Tam giác ADE = tam giác BAF (c.g.c)
=> AF = DE (2 cạnh tương ứng)
Lại có: AM = AF : 2 => AM = DE : 2 (đpcm)
b) Gọi giao điểm của AM và DE là N
Ta có: tam giác ADE = tam giác BAF (chứng minh trên)
=> Góc D = góc BAF (2 góc tương ứng)
Mà góc BAF + góc DAN = 180 độ - góc BAD = 180 độ - 90 độ = 90 độ
=> Góc D + góc DAN = 90 độ
=> Tam giác ADN vuông tại N
hay AM _|_ DE (đpcm)
Bài 4. Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C có bờ AB, vẽ tia Ax vuông góc với AB, trên tia đó lấy D sao cho AD=AB . Trên nửa mặt phẳng không chứa B có bờ AC, vẽ tia Ay vuông góc với AC, trên tia đó lấy E sao cho AE=AC.
Chứng minh rằng
a )AM=\(\dfrac{1}{2}\).DE
b)AM\(\perp\)DE
Bài 4. Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C có bờ AB, vẽ tia Ax vuông góc với AB, trên tia đó lấy D sao cho AD=AB. Trên nửa mặt phẳng không chứa B có bờ AC, vẽ tia Ay vuông góc với AC, trên tia đó lấy E sao cho AE=AC
Chứng minh rằng
a )AM=1/2DE
b)AM vuông góc với DE nhớ vẽ hình
Bài 3: Cho tam giác ABC nhọn, M là trung điểm của BC, vẽ điểm F thuộc tia đối của tia MA sao cho MF = MA.
Trên nửa mặt phẳng không chứa C có bờ AB, vẽ đoạn thẳng AD = AB, AD AB. Trên nửa mặt phẳng không chứa B có bờ AC, vẽ đoạn thẳng AE = AC, AE AC Chứng minh:
a, ab//CF B, góc DAE = góc ACF C, tam giác ADE = tam giác CFA D, ÂM vuông góc DE
Cho tam giác ABC trên nửa mặt phẳng bờ BC không chứa điểm B vẽ điểm D sao cho BC = AD. M ;N;P;Q theo thứ tự là trung điểm của AC;BD;AB;CD.CMR :NM vuông góc với PQ
Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C có bờ AB, vẽ tia Ax vuông góc với AB, trên đó lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng không chứa B có bờ AC, vẽ tia Ay vuông góc với AC, trên đó lấy điểm D sao cho AE = AC. Chứng minh rằng: a, AM = DE/2 b,AM vuông góc với DE