Cho tỉ lệ thức a/b=c/d
Chứng minh: ad( a-b )( c+d )= bc( c-d )( a+b)
chứng minh rằng từ đẳng thức ad = bc ( c , d khác 0 ) ta suy a được tỉ lệ thức a / c = b / d
Do ad = bc
=> \(\frac{ad}{cd}=\frac{bc}{cd}\)
=> \(\frac{a}{c}=\frac{b}{d}\left(đpcm\right)\)
Do ad = bc
\(\Rightarrow\frac{a}{d}=\frac{b}{c}\)
\(\Rightarrow ac=bd\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\left(\text{đ}pcm\right)\)
Giải:
Ta có: ad = bc
\(\Rightarrow\) ad : cd = bc : cd
\(\Rightarrow\) a : c = d : d
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Vậy \(\frac{a}{c}=\frac{b}{d}\)
Chứng minh từ đẳng thức ad=bc(c,d khác 0) ta có thể suy ra tỉ lệ thức sau a/c=b/d
Trần Trương Quỳnh Hoa và câu hỏi tương tự có đấy, tick cho mình nha!
Chứng minh rằng từ đẳng thức ad=bc (c, d khác 0 ) ta có thể suy ra được tỉ lệ thức a : c = b : d
\(ad=bc=>ad:dc=bc:dc=>\frac{ad}{dc}=\frac{bc}{dc}=>\frac{a}{c}=\frac{b}{d}\)
\(ad=bc\Rightarrow\frac{ad}{cd}=\frac{bc}{cd}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
cho tỉ lệ thức: a/b = c/d. chứng minh ta có tỉ lệ thức: a/b = a+c/b+d = a-c/b-d
Ta có:
\(\frac{a}{b}=\frac{c}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\left(1\right).\)
\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\left(2\right).\)
Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\left(đpcm\right).\)
Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a+c}{b+c}=\frac{a-c}{b-d}\)( tính chất dãy tỉ số bằng nhau )
ad=bc
=>ad/cd=bc/cd(vì cd#0)
=>a/c=b/d (₫pcm)
k mk nha
Cho tỉ lệ thức a/b=c/d chứng minh có tỉ lệ thức A+B/b = C+D/d
Theo đề ra, ta có:
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
Từ \(\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
1.cho tỉ lệ thức a/b=c/d chứng minh rằng ta có tỉ lệ thức
a+b/b=c+d/d;a+b/a-b/c+d/c-d
Cho ad=bc, với a,b,c,d≠0, ta có thể suy ra tỉ lệ thức nào sao đây không và vì sao?
A.\(\dfrac{2-2b}{b}=\dfrac{c-2d}{d}\)
B.\(\dfrac{a-2b}{c-2d}=\dfrac{b}{d}\)
Chứng minh rằng : nếu ( ad + bc )2 = 4abcd thì các số a,b,c,d thì lập thành 1 tỉ lệ thức
Ta có: \(\left(ad+bc\right)^2=4abcd\)
\(\Leftrightarrow a^2d^2+2abcd+b^2c^2-4abcd=0\)
\(\Leftrightarrow a^2d^2-2abcd+b^2c^2=0\)
\(\Leftrightarrow\left(ad-bc\right)^2=0\)
\(\Leftrightarrow ad-bc=0\)
\(\Leftrightarrow ad=bc\)
hay \(\frac{a}{b}=\frac{c}{d}\)(đpcm)