Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Angela jolie
Xem chi tiết
oooloo
Xem chi tiết
Rell
Xem chi tiết
Hồng Phúc
13 tháng 10 2020 lúc 18:40

Đúng đề chưa vậy

Khách vãng lai đã xóa
Nguyễn Thế Phúc Anh
Xem chi tiết
Nguyễn Thế Phúc Anh
20 tháng 7 2018 lúc 15:55

1 like tức thì nào

Phạm Tuấn Đạt
8 tháng 12 2019 lúc 23:20

\(\left(\sqrt{2x+3}+2\right)\left(\sqrt{x+6}-\sqrt{x+1}\right)=5\)

\(ĐKXĐ:x\ge-1\).Nhận thấy \(\sqrt{x+6}-\sqrt{x+1}>0\)

\(\Leftrightarrow\left(\sqrt{2x+3}+2\right)\frac{\left(\sqrt{x+6}+\sqrt{x+1}\right)\left(\sqrt{x+6}-\sqrt{x+1}\right)}{\sqrt{x+6}-\sqrt{x+1}}=5\)

\(\Leftrightarrow\left(\sqrt{2x+3}+2\right)\frac{5}{\sqrt{x+6}-\sqrt{x+1}}=5\)

\(\Leftrightarrow\frac{\sqrt{2x+3}+2}{\sqrt{x+6}-\sqrt{x+1}}=1\)

\(\Leftrightarrow\sqrt{2x+3}+2-\sqrt{x+6}+\sqrt{x+1}=0\)

Th1:\(\sqrt{x+1}=2\Leftrightarrow x=3\left(thoaman\right)\)

Th2:\(\sqrt{x+1}-2\ne0\Leftrightarrow x\ne3\)

\(\Leftrightarrow\left(\sqrt{2x+3}-\sqrt{x+6}\right)+\left(2+\sqrt{x+1}\right)=0\)

\(\Leftrightarrow\frac{x-3}{\sqrt{2x+3}+\sqrt{x+6}}+\frac{x-3}{\sqrt{x+1}-2}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{2x+3}+\sqrt{x+6}}+\frac{1}{\sqrt{x+1}-2}\right)=0\)

Tự lm tiếp nha

Khách vãng lai đã xóa
Vongola Decimo
Xem chi tiết
Vũ Đình Thái
Xem chi tiết
Vuy năm bờ xuy
9 tháng 6 2021 lúc 22:02

\(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=-2x\left(-4\le x\le4\right)\) 

Dễ thấy x=0 là nghiệm của phương trình (1)

Xét x\(\ne\)0.Nhân cả 2 vế của (1) với \(\left(\sqrt{4+x}+2\right)\) được

\(x\left(\sqrt{4-x}+2\right)=-2x\left(\sqrt{4+x}+2\right)\)

\(\Rightarrow\sqrt{4-x}+2=-2\left(\sqrt{4+x}+2\right)\)

\(\Rightarrow\sqrt{4-x}=-2\sqrt{4+x}-6\)

\(\Rightarrow\sqrt{4-x}< 0\)(vô nghiệm)

Vậy nghiệm của phương trình (1) là x=0

-Chúc bạn học tốt-

Helen Nguyễn
9 tháng 6 2021 lúc 22:19

Bài giải:

Điều kiện:\(\left\{{}\begin{matrix}x+4\ge0\\4-x\ge0\end{matrix}\right.\)\(\left\{{}\begin{matrix}x\ge-4\\x\le4\end{matrix}\right.\)\(-4\le x\le4\)

Pt: \(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=-2x\)

\(\dfrac{x+4-4}{\sqrt{x+4}+2}\left(\sqrt{4-x}+2\right)=-2x\)

\(\dfrac{x\left(\sqrt{4-x}+2\right)}{\sqrt{x+4}+2}+2x=0\)

\(x\left(\dfrac{\sqrt{4-x}+2}{\sqrt{x+4}+2}+2\right)=0\)

\(x=0\left(tm\right)\)

Vì \(\sqrt{4-x}+2>0\) và \(\sqrt{x+4}+2>0\) với mọi x

Nên \(\dfrac{\sqrt{4-x}+2}{\sqrt{x+4}+2}>0\) ⇒ \(\dfrac{\sqrt{4-x}+2}{\sqrt{x+4}+2}+2>0\)

Vậy pt có nghiệm duy nhất là \(x=0\)

Vương Tuấn Khải
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 11 2019 lúc 3:44

a/ ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{1-x}=a\ge0\\\sqrt{1+x}=b\ge0\end{matrix}\right.\) được hệ:

\(\left\{{}\begin{matrix}\sqrt{1+ab}\left(a^3-b^3\right)=2+ab\\a^2+b^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{1+ab}\left(a-b\right)\left(a^2+ab+b^2\right)=a^2+b^2+ab\\a^2+b^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{1+ab}\left(a-b\right)=1\\a^2+b^2=2\end{matrix}\right.\) \(\left(a\ge b\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(1+ab\right)\left(a-b\right)^2=1\\a^2+b^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(1+ab\right)\left(2-2ab\right)=1\\a^2+b^2=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}1-a^2b^2=\frac{1}{2}\\a^2+b^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2b^2=\frac{1}{2}\\a^2+b^2=2\end{matrix}\right.\)

Theo Viet đảo, \(a^2;b^2\) là nghiệm của:

\(t^2-2t+\frac{1}{2}=0\Rightarrow\left[{}\begin{matrix}t=\frac{2+\sqrt{2}}{2}\\t=\frac{2-\sqrt{2}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}1-x=\frac{2+\sqrt{2}}{2}\\1-x=\frac{2-\sqrt{2}}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{\sqrt{2}}{2}\\x=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
12 tháng 11 2019 lúc 4:10

2 phần còn lại ko biết giải theo kiểu lớp 10, chỉ biết lượng giác hóa, bạn tham khảo thôi :(

b/ Đặt \(x=cos2t\) pt trở thành:

\(\sqrt{1-cos2t}-2cos2t.\sqrt{1-cos^22t}-\left(2cos^22t-1\right)=0\)

\(\Leftrightarrow\sqrt{2}sint-2sin2t.cos2t-cos4t=0\)

\(\Leftrightarrow\sqrt{2}sint-sin4t-cos4t=0\)

\(\Leftrightarrow\sqrt{2}sint=sin4t+cos4t=\sqrt{2}sin\left(4t+\frac{\pi}{4}\right)\)

\(\Leftrightarrow sin\left(4t+\frac{\pi}{4}\right)=sint\)

\(\Leftrightarrow\left[{}\begin{matrix}4t+\frac{\pi}{4}=t+k2\pi\\4t+\frac{\pi}{4}=\pi-t+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-\frac{\pi}{12}+\frac{k2\pi}{3}\\t=-\frac{\pi}{20}+\frac{k2\pi}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=cos\left(-\frac{\pi}{6}+\frac{k4\pi}{3}\right)\\x=cos\left(-\frac{\pi}{10}+\frac{k4\pi}{5}\right)\end{matrix}\right.\) với \(k\in Z\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
12 tháng 11 2019 lúc 4:29

c/ Đặt \(x=cost\)

\(64cos^6t-112cos^4t+56cos^2t-7=2\sqrt{1-cos^2t}\)

\(\Leftrightarrow64cos^6t-112cos^4t+56cos^2t-7=2sint\)

Nhận thấy \(cost=0\) không phải nghiệm, pt tương đương:

\(64cos^7t-112cos^5t+56cos^3t-7cost=2sint.cost\)

\(\Leftrightarrow cos7t=sin2t=cos\left(\frac{\pi}{2}-2t\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}7t=\frac{\pi}{2}-2t+k2\pi\\7t=2t-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\frac{\pi}{18}+\frac{k2\pi}{9}\\t=-\frac{\pi}{10}+\frac{k2\pi}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=cos\left(\frac{\pi}{18}+\frac{k2\pi}{9}\right)\\x=\left(-\frac{\pi}{10}+\frac{k2\pi}{5}\right)\end{matrix}\right.\)

Ý tưởng của người ra đề khá kì quặc, công thức \(cos7a\) kia thực sự là chứng minh rất mất thời gian

Khách vãng lai đã xóa
vodiem
Xem chi tiết
Thanh Tùng DZ
1 tháng 11 2019 lúc 16:50

nhiều thế giải ko đổi đâu bạn

Khách vãng lai đã xóa
vodiem
1 tháng 11 2019 lúc 18:47

vậy trả lời câu a thôi

Khách vãng lai đã xóa
Thanh Tùng DZ
1 tháng 11 2019 lúc 21:06

đkxđ : \(\frac{1}{2}\le x\le7\)

\(x^2-5x+3\sqrt{2x-1}=2\sqrt{14-2x}+5\)

\(\Leftrightarrow\left(x^2-5x\right)+3\left(\sqrt{2x-1}-3\right)=2\left(\sqrt{14-2x}-2\right)\)

\(\Leftrightarrow x\left(x-5\right)+\frac{3.\left(2x-10\right)}{\sqrt{2x-1}+3}+\frac{2.\left(2x-10\right)}{\sqrt{14-2x}+2}=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+\frac{6}{\sqrt{2x-1}+3}+\frac{4}{\sqrt{14-2x}+2}\right)=0\)

\(\Leftrightarrow x=5\)

còn bài a,c lười đánh lắm

Khách vãng lai đã xóa
Linh Vũ
Xem chi tiết