Cho 2 hình bình hành chung đỉnh A: ABCD và AB'C'D'
Cm tam giác BC'D và tam giác B'CD' cùng trọng tâm
Cho hai hình bình hành ABCD và AEFG. Chứng minh hai tam giác BFD và CEG có cùng trọng tâm.
cho hình bình hành ABCD và O là giao điểm của AC và BD . Trên đường chéo AC lấy 2 điểm M và N sao cho AM = MN = NC
a) CM : tứ giác BMDN là hình bình hành
b) BC cắt DN tại K . CM : N là trọng tâm của tam giác BDC
a: Xét tứ giác BMDN có
O là trung điểm của MN
O là trung điểm của BD
Do đó: BMDN là hình bình hành
Cho hình bình hành ABCD ncos phương trình đường chéo AC: x-y+1=0 điểm G(1;4) là trọng tâm tam giác ABC điểm E(0;-3) thuộc đường cao kẻ từ D của tam giác ACD. Tìm toạ độ các đỉnh của hình bình hành cho S tứ giác AGCD=32 và tung độ yA>0
http://tin.tuyensinh247.com/de-thi-thu-dai-hoc-mon-toan-khoi-b-nam-2014-lan-cuoi-thpt-chuyen-dh-vinh-c31a17586.html
Cau 7a nha
Trong mặt phẳng oxy, cho A(-1;5); B(1;-2); C(3;6) a) Chứng minh rằng A, B, C lập thành một tam giác. b) Tính tọa độ trọng tâm tam giác ABC. c) Tìm tọa độ điểm D của hình bình hành ABCD và tính tọa độ tâm của hình bình hành
Trong mặt phẳng tọa độ Oxy cho A(3; -1) ; B( -1; 2) và I( 1; -1) . Xác định tọa độ các điểm C; D sao cho tứ giác ABCD là hình bình hành biết I là trọng tâm tam giác ABC. Tìm tọa tâm O của hình bình hành ABCD
A.
B.
C.
D.
Cho hình hành ABCD. gọi O là giao điểm của 2 đường chéo. Chứng minh trọng tâm của 4 tam giác AOB, BOA, COD, DOA là 4 đỉnh của hình bình hành
Cho hình chóp SABCD có đáy ABCD là hình bình hành. G, H lần lượt là trọng tâm tam giác SBC, tam giác SCD. Tìm giao tuyến (SGH) và (SAD)
Cho hình bình hành ABCD. Dựng ở phía ngoài hình bình hành các tam giác vuông cân ABE đỉnh A và BCF đỉnh C. Chứng minh rằng DEF là tam giác vuông cân ?
Cho hình chóp S. ABCD có đáy là hình bình hành ABCD. Gọi M,N là điểm trên BC,CD sao cho: CM=2BM , CN=2ND. Gọi G là trọng tâm tam giác SAD. +) Tìm giao tuyến của (GMN) và (SAD)
Cho hình bình hành ABCD, gọi E và F lần lượt là trung điểm của BC và CD. Đường chéo BD cắt AE và AF lần lượt tại M và N. Chứng minh: a. M là trọng tâm của tam giác ABC, N là trọng tâm của tam giác ADC. b. MB=MN=ND
TK
a, Gọi O là giao điểm hai đường chéo của hình bình hành ABCD
=> O là trung điểm của AC và BD
hay OA = OC và OD = OB
Xét tam giác ADC có:
AF là đường trung tuyến ( F là trung điểm của DC)
DO là đường trung tuyến ( OA=OC)
Hai đường trung tuyến này cắt nhau tại M
=> M là trọng tâm của tam giác ADC
Tương tự, xét tam giác ABC có:
AE là đường trung tuyến ( E là trung điểm của BC)
BO là đường trung tuyến ( OA=OC)
Hai đường trung tuyến cắt nhau tại N
=> N là trọng tâm của tam giác ABC
b,
Nối M với C ; N với C
Có OM = 1313 OD
ON = 1313 OB
mà OD = OB (cm câu a)
=> OM = ON
Xét tứ giác ANCM có:
OM = ON (cmt)
OA = OC (cm câu a)
=> tứ giác ANCM là hình bình hành
=> AM//CN hay AF//CN
Xét ΔΔ DNC có:
DF=CF (gt)
MF//CN (AF//CN)
=> DM = MN (1)
Gọi I là giao điểm của EF và MC
Xét ΔΔ BCD có:
DF = CF (gt)
BE = CE (gt)
=> EF là đường trung bình của ΔΔ BCD
=> EF//BD
hay EI//BD
Xét ΔΔ BMC có:
EI//BM ( M∈∈ BD)
BE = CE (gt)
=> MN = NB (2)
Hầy chỗ này bạn viết đề sai nữa rồi! phải là DM = MN = NB hoặc ngược lại
Từ (1) và (2) suy ra :
DM = MN =NB (đpcm)
Mình sẽ giải cho bạn câu a trước ( tự vẽ hình nha)
Gọi O là giao điểm hai đường chéo của hình bình hành ABCD
=> O là trung điểm của AC và BD
hay OA = OC và OD = OB
Xét tam giác ADC có:
AF là đường trung tuyến ( F là trung điểm của DC)
DO là đường trung tuyến ( OA=OC)
Hai đường trung tuyến này cắt nhau tại M
=> M là trọng tâm của tam giác ADC
Tương tự, xét tam giác ABC có:
AE là đường trung tuyến ( E là trung điểm của BC)
BO là đường trung tuyến ( OA=OC)
Hai đường trung tuyến cắt nhau tại N
=> N là trọng tâm của tam giác ABC
nhưng hơi dài chút
Nối M với C ; N với C
Có \(OM=\dfrac{1}{3}OD\)
ON=\(\dfrac{1}{3}OB\)
mà OD = OB (cm câu a)
=> OM = ON
Xét tứ giác ANCM có:
OM = ON (cmt)
OA = OC (cm câu a)
=> tứ giác ANCM là hình bình hành
=> AM//CN hay AF//CN
Xét Δ DNC có:
DF=CF (gt)
MF//CN (AF//CN)
=> DM = MN (1)
Gọi I là giao điểm của EF và MC
Xét Δ BCD có:
DF = CF (gt)
BE = CE (gt)
=> EF là đường trung bình của ΔΔ BCD
=> EF//BD
hay EI//BD
Xét Δ BMC có:
EI//BM ( M∈∈ BD)
BE = CE (gt)
=> MN = NB (2)
Hầy chỗ này bạn viết đề sai nữa rồi! phải là DM = MN = NB hoặc ngược lại
Từ (1) và (2) suy ra :
DM = MN =NB (đpcm)