Tìm x: (x+1)+(x+2)+(x+3)+(x+4)+(x+5)=65
Tìm x biết [x+1]+[x+2]+[x+3]+[x+4]+[x+5]=65
\(5x+\frac{5.6}{2}=65\Rightarrow x=\frac{65-15}{5}=10\)
1: =>5(2x+6)=40
=>2x+6=8
=>2x=2
=>x=1
2: =>12-(x+3)=256:64=4
=>(x+3)=8
=>x=5
3: =>2x-1=3 hoặc 2x-1=-3
=>x=2 hoặc x=-1
4: \(\Leftrightarrow3^{x+2017}=3^{2015}\)
=>x+2017=2015
=>x=-2
1: =>5(2x+6)=40
=>2x+6=8
=>2x=2
=>x=1
2: =>12-(x+3)=256:64=4
=>(x+3)=8
=>x=5
3: =>2x-1=3 hoặc 2x-1=-3
=>x=2 hoặc x=-1
4:
=>x+2017=2015
=>x=-2
Tìm giá trị lớn nhất , nhỏ nhất của
1) D=3- 3/5 . |2/5 - x|
2) E=7/23 + 3/7 . |x - 4/7|
3) F=|x - 5| -|x - 7|
4) G= |500 - x| + |x - 300|
5) H=|125 - x| + |x - 65|
Giải các phương trình sau:
a \(2\sqrt[3]{\left(x+2\right)^2}-\sqrt[3]{\left(x-2\right)^2}=\sqrt[3]{x^2-4}\)
b \(\sqrt[3]{\left(65+x\right)^2}+4\sqrt[3]{\left(65-x\right)^2}=5\sqrt[3]{65^2-x^2}\)
c \(\sqrt[3]{x+1}+\sqrt[3]{x+2}=1+\sqrt[3]{x^2+3x+2}\)
d \(\sqrt[3]{x-2}+\sqrt[3]{x+3}=\sqrt[3]{2x+1}\)
e \(\sqrt[3]{2x-1}+\sqrt[3]{x-1}=\sqrt[3]{3x+1}\)
a.
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x+2}=a\\\sqrt[3]{x-2}=b\end{matrix}\right.\) ta được:
\(2a^2-b^2=ab\)
\(\Leftrightarrow\left(a-b\right)\left(2a+b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\2a=-b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a^3=b^3\\8a^3=-b^3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=x-2\left(vô-nghiệm\right)\\8\left(x+2\right)=-\left(x-2\right)\end{matrix}\right.\)
\(\Leftrightarrow x=-\dfrac{14}{9}\)
b.
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{65+x}=a\\\sqrt[3]{65-x}=b\end{matrix}\right.\)
\(\Rightarrow a^2+4b^2=5ab\)
\(\Leftrightarrow\left(a-b\right)\left(a-4b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=4b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a^3=b^3\\a^3=64b^3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}65+x=65-x\\65+x=64\left(65-x\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
c.
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x+2}=a\\\sqrt[3]{x+1}=b\end{matrix}\right.\)
\(\Rightarrow a+b=1+ab\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a^3=1\\b^3=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=1\\x+1=1\end{matrix}\right.\)
\(\Leftrightarrow...\)
Giải phương trình
a, \(\sqrt{x-1+4\sqrt{x-5}}+\sqrt{11+x+8\sqrt{x-5}}=0\)
b, \(\sqrt{x+2-3\sqrt{2x-5}}+\sqrt{x-2+\sqrt{2x-5}}=\sqrt{8}\)
c. \(\sqrt[3]{\left(65+x\right)^2}+4\sqrt[3]{\left(65-x\right)^2}=5\sqrt[3]{65^2-x^2}\)
d, \(\sqrt{\dfrac{x^2+x+1}{x}}+\sqrt{\dfrac{x}{x^2+x+1}}=\dfrac{7}{4}\)
b, ĐKXĐ: \(x\ge\frac{5}{2}\)
\(pt\Leftrightarrow\sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}+1\right)^2}=4\)
\(\Leftrightarrow\sqrt{2x-5}=3\)
\(\Leftrightarrow x=7\left(tm\right)\)
a, ĐKXĐ: \(x\ge5\)
\(pt\Leftrightarrow\sqrt{x-5+4\sqrt{x-5}+4}+\sqrt{x-5+8\sqrt{x-5}+16}=0\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-5}+2\right)^2}+\sqrt{\left(\sqrt{x-5}+4\right)^2}=0\)
\(\Leftrightarrow2\sqrt{x-5}+6=0\)
\(\Leftrightarrow\sqrt{x-5}=-3\)
Phương trình vô nghiệm
Tìm x biết:
a, 2^x -15= 2^4+1
b, x+1/65+x+2/64=x+3/63+x+4/61
`a,`\(2^x -15= 2^4+1\)
`-> 2^x-15=17`
`-> 2^x=17+15`
`-> 2^x=32`
`-> 2^x=2^5`
`-> x=5`
`b,` Có phải đề là \(\dfrac{x+1}{65}+\dfrac{x+2}{64}=\dfrac{x+3}{63}+\dfrac{x+4}{62}\) ?
`=>`\(\dfrac{x+1}{65}+1+\dfrac{x+2}{64}+1=\dfrac{x+3}{63}+1+\dfrac{x+4}{62}+1\)
`=>`\(\dfrac{x+1+65}{65}+\dfrac{x+2+64}{64}-\dfrac{x+3+63}{63}-\dfrac{x+4+62}{62}=0\)
`=>`\(\dfrac{x+66}{65}+\dfrac{x+66}{64}-\dfrac{x+66}{63}-\dfrac{x+66}{62}=0\)
`=>`\(\left(x+66\right)\left(\dfrac{1}{65}+\dfrac{1}{64}-\dfrac{1}{63}-\dfrac{1}{62}\right)=0\)
Mà `1/65+1/64-1/63-1/62 \ne 0`
`-> x+66=0`
`-> x=-66`
Tìm x biết:
a, 2^x -15= 2^4+1
b, x+1/65+x+2/64=x+3/63+x+4/61
a: =>2^x=2^4+16=32
=>x=5
b: Sửa đề: \(\dfrac{x+1}{65}+\dfrac{x+2}{64}=\dfrac{x+3}{63}+\dfrac{x+4}{62}\)
=>\(\left(\dfrac{x+1}{65}+1\right)+\left(\dfrac{x+2}{64}+1\right)=\left(\dfrac{x+3}{63}+1\right)+\left(\dfrac{x+4}{62}+1\right)\)
=>x+66=0
=>x=-66
Tìm x ∈ N, biết:
⦁ 2.(x + 4) + 5 = 65 b) (x – 5)2 = 16
c) x ⋮ 12 và 24 < x < 67 d) 5x.3 – 75 = 0
a) 2.(x+4)+5=65
2.(x+4)=65-5
2.(x+4)=60
x+4=60:2
x+4=30
x=30-4=26
Bài 1: Tìm x thuộc Z:
1) 4x+1+40=65
2) 10+2x=162:43
3) 65-4x+2=20180
4) 2 < |x| < hoặc bằng 4
Bài 2:
Tìm x thuộc N, biết:
1) 13 + 23+....+ 103= (x+1)2
2) 1+3+5+...+99=(x+2)2
Thanks
1, 4\(^{x+1}\) + 4\(^0\) = 65
\(\Rightarrow\)4\(^{x+1}\) = 65 - 1
\(\Rightarrow\)x + 1 = 64 : 4
\(\Rightarrow\)x + 1 = 16
\(\Rightarrow\)x = 15
2) 10 + 2x = 16\(^{^2}\): 4\(^3\)
\(\Rightarrow\)10 + 2x = 4
\(\Rightarrow\)2x = 4 - 10
\(\Rightarrow\)2x = -6
\(\Rightarrow\)x = -3
Bài 1
a) 4x+1 + 40 = 65
=> 4x+1 + 1 = 65
=> 4x+1 = 64
=> 4x+1 = 43
=>x + 1 = 3
=> x = 2
b) 10 + 2x = 162: 43
=> 10 + 2x = ( 42 )2 : 43
=> 10 + 2x = 44 : 43
=> 10 + 2x = 4
=> 2x = -6
=> x = -3
c) 65 - 4x+2 = 20180
=> 65 - 4x+2 = 1
=> 4x+2 = 64
=> 4x+2 = 43
=> x + 2 = 3
=> x = 1
d) 2 < |x| < 4
=> x thuộc { -3 ; -4 }