Chứng minh rằng nếu \(\dfrac{1}{x}-\dfrac{1}{y}-\dfrac{1}{z}=1\) và \(x=y+z\) thì:
\(\dfrac{1}{x^2}+\dfrac{1}{y^2} +\dfrac{1}{z^2}=1\)
CMR: Nếu \(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\)=1 và\(\dfrac{y}{x}+\dfrac{z}{y}+\dfrac{x}{z}\)=0 thì\(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\)=1
Cho \(x\), \(y\), \(z\) là 3 số khác 0 thoả mãn \(x\) \(+\) \(y\) \(+\) \(z\) \(=0\). Chứng minh rằng:
\(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}\)=\(\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\)
Có VT = \(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-\dfrac{2}{xy}-\dfrac{2}{yz}-\dfrac{2}{zx}}\)
\(=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-\dfrac{2}{xyz}\left(x+y+z\right)}\)
\(=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|=VP\) (Vì x + y + z = 0)
Cho x, y, z khác 0, \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). Chứng minh rằng: \(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=3\)
Trước hết, ta đi chứng minh một bổ đề sau: Nếu \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\). Thật vậy, ta phân tích
\(P=a^3+b^3+c^3-3abc\)
\(P=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(P=\left(a+b+c\right)\left[\left(a+b\right)^2+\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(P=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\).
Hiển nhiên nếu \(a+b+c=0\) thì \(P=0\) hay \(a^3+b^3+c^3=3abc\), bổ đề được chứng minh.
Do \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) nên áp dụng bổ đề, ta được \(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\).
Vì vậy \(\dfrac{yz}{x^2}+\dfrac{zx}{y^2}+\dfrac{xy}{z^2}=\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}\) \(=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\) \(=xyz.\dfrac{3}{xyz}=3\). Ta có đpcm
Đặt $ X = a - b; Y = b - c; Z = c - a \Rightarrow X + Y + Z = 0$
Với X + Y + Z = 0, ta chứng minh được :
$ ( \dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z} )^2 = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2}$
Thật vậy, ta có :
$ ( \dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z} )^2 = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2} + \dfrac{2}{XY} + \dfrac{2}{YZ} + \dfrac{2}{ZX}$
$ = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2} + 2.\dfrac{X + Y + Z}{XYZ}$
$ = \dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2}$ ( do X + Y + Z = 0)
$ \Rightarrow \sqrt{\dfrac{1}{X^2} + \dfrac{1}{Y^2} + \dfrac{1}{Z^2}} = \sqrt{( \dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z} )^2} = |\dfrac{1}{X} + \dfrac{1}{Y} + \dfrac{1}{Z}|$
Suy ra : $ \sqrt{\dfrac{1}{(a - b)^2} + \dfrac{1}{(b - c)^2} +\dfrac{1}{( c - a)^2}} = |\dfrac{1}{a - b} + \dfrac{1}{b - c} + \dfrac{1}{c - a}|$
Do a, b, c là số hữu tỷ nên $|\dfrac{1}{a - b} + \dfrac{1}{b - c} + \dfrac{1}{c - a}|$ cũng là số hữu tỷ. Ta có điều phải chứng minh.
1,Chứng minh rằng:
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{1990^2}< \dfrac{3}{4}\)
2,Chứng minh rằng:
\(1< \dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< 2\)
2) Mình nghĩ nên nhỏ hơn 3 thì dễ tính hơn... @@
Ta có :
\(\dfrac{x}{x+y+z}< \dfrac{x}{x+y}< \dfrac{x}{x}\\ \dfrac{y}{x+y+z}< \dfrac{y}{y+z}< \dfrac{y}{y}\\ \dfrac{z}{x+y+z}< \dfrac{z}{z+x}< \dfrac{z}{z}\)
\(\Rightarrow\dfrac{x}{x+y+z}+\dfrac{y}{x+y+z}+\dfrac{z}{x+y+z}< \dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< \dfrac{x}{x}+\dfrac{y}{y}+\dfrac{z}{z}\\ \Rightarrow\dfrac{x+y+z}{x+y+z}< \dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< 1+1+1\\ \Rightarrow1< \dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< 3\)
Cho các số dương x,y,z và \(x^2+y^2+z^2=1\).Chứng minh rằng:\(\dfrac{x^3}{y+2z}+\dfrac{y^3}{z+2x}+\dfrac{z^3}{x+2y}\ge\dfrac{1}{3}\)
\(\dfrac{x^3}{y+2z}+\dfrac{y^3}{z+2x}+\dfrac{z^3}{x+2y}=\dfrac{x^4}{xy+2xz}+\dfrac{y^4}{yz+2xy}+\dfrac{z^4}{xz+2yz}\)
\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)
Cho x,y,z dương thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\) . Chứng minh rằng \(\dfrac{1}{\sqrt{2x^2+y^2+3}}+\dfrac{1}{\sqrt{2y^2+z^2+3}}+\dfrac{1}{\sqrt{2z^2+x^2+3}}\) ≤ \(\dfrac{\sqrt{6}}{2}\)
\(VT^2\le3\left(\dfrac{1}{2x^2+y^2+3}+\dfrac{1}{2y^2+z^2+3}+\dfrac{1}{2z^2+x^2+3}\right)\)
Mặt khác:
\(\dfrac{1}{2\left(x^2+1\right)+y^2+1}\le\dfrac{1}{4x+2y}=\dfrac{1}{2}\left(\dfrac{1}{x+x+y}\right)\le\dfrac{1}{18}\left(\dfrac{2}{x}+\dfrac{1}{y}\right)\)
\(\Rightarrow VT^2\le\dfrac{1}{6}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{3}{2}\)
\(\Rightarrow VT\le\dfrac{\sqrt{6}}{2}\)
Cho x, y, z > 0 thoả mãn x+y+z=1. Chứng minh rằng:
a) \(\sqrt{x^2+\dfrac{1}{x^2}}+\sqrt{y^2+\dfrac{1}{y^2}}+\sqrt{z^2+\dfrac{1}{z^2}}\ge\sqrt{82}\)
b) \(\sqrt{x^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}}+\sqrt{y^2+\dfrac{1}{y^2}+\dfrac{1}{z^2}}+\sqrt{z^2+\dfrac{1}{z^2}+\dfrac{1}{x^2}}\ge\sqrt{163}\)
c)\(\sqrt{x^2+\dfrac{2}{y^2}+\dfrac{3}{z^2}}+\sqrt{y^2+\dfrac{2}{z^2}+\dfrac{3}{x^2}}+\sqrt{z^2+\dfrac{2}{z^2}+\dfrac{3}{y^2}}\ge\sqrt{406}\)
với x,y,z>0 và \(x+y+z\ge\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)
chứng minh đẳng thức \(x+y+z\ge\dfrac{3}{x+y+z}+\dfrac{2}{xyz}\)
\(\Rightarrow\left(x+y+z\right)^2\ge\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2\ge3\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)=\dfrac{3\left(x+y+z\right)}{xyz}\Rightarrow x+y+z\ge\dfrac{3}{xyz}\)
\(x+y+z=\dfrac{x+y+z}{3}+\dfrac{2\left(x+y+z\right)}{3}\ge\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{2}{3}.\dfrac{3}{xyz}\ge\dfrac{1}{3}\left(\dfrac{9}{x+y+z}\right)+\dfrac{2}{xyz}=\dfrac{3}{x+y+z}+\dfrac{2}{xyz}\left(đpcm\right)\)
\(dấu"="xảy\) \(ra\Leftrightarrow x=y=z=1\)