Tính: (nhân đa thức với đa thức)
\(-\dfrac{2}{5}x^2y^5\left(5xy^2-\dfrac{1}{2}x^2y-\dfrac{7}{5}x^3\right)\)
Phân tích đa thức thành nhân tử :
a. \(\dfrac{1}{2}x^2-2y^2\)
b. \(\dfrac{1}{3}xy+x^2z+xz\)
c. \(18x^3-\dfrac{8}{25}x\)
d. \(\dfrac{2}{5}x^2+5x^3+x^2y\)
e. \(\dfrac{1}{2}\left(x^2+y^2\right)^2-2x^2y^2\)
f. \(27x^3-\dfrac{1}{8}y^3\)
Phân tích đa thức thành nhân tử :
a. \(\dfrac{1}{2}x^2-2y^2\)
b. \(\dfrac{1}{3}xy+x^2z+xz\)
c. \(18x^3-\dfrac{8}{25}x\)
d. \(\dfrac{2}{5}x^2+5x^3+x^2y\)
e. \(\dfrac{1}{2}\left(x^2+y^2\right)^2-2x^2y^2\)
f. \(27x^3-\dfrac{1}{8}y^3\)
g. \(\dfrac{1}{2}x^2+\dfrac{1}{4}x+\dfrac{1}{32}\)
\(a,=2\left(\dfrac{1}{4}x^2-y^2\right)=2\left(\dfrac{1}{2}x-y\right)\left(\dfrac{1}{2}x+y\right)\\ b,=\dfrac{1}{3}x\left(y+3xz+3z\right)\\ c,=2x\left(9x^2-\dfrac{4}{25}\right)=2x\left(3x-\dfrac{2}{5}\right)\left(3x+\dfrac{2}{5}\right)\)
\(d,=x^2\left(\dfrac{2}{5}+5x+y\right)\\ e,=\dfrac{1}{2}\left[\left(x^2+y^2\right)^2-4x^2y^2\right]\\ =\dfrac{1}{2}\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\\ =\dfrac{1}{2}\left(x-y\right)^2\left(x+y\right)^2\\ f,=\left(3x-\dfrac{1}{2}y\right)\left(9x^2+\dfrac{3}{2}xy+\dfrac{1}{4}y^2\right)\\ g,=\dfrac{1}{2}\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}\right)=\dfrac{1}{2}\left(x+\dfrac{1}{4}\right)^2\)
Phân tích đa thức \(\dfrac{2}{5}x^2+5x^3+x^2y\) thành nhân tử
a. \(x^2\left(\dfrac{2}{5}+5x+y\right)\)
b. \(\dfrac{1}{5}x^2\left(2+25x+5y\right)\)
Cách phân tích nào đúng a hay b và GIẢI THÍCH VÌ SAO?
A. Cách B sai vì 5 : 2/5 thì ko thể nào = 25 đc.
1.Tính \(\dfrac{x}{x+2}-\dfrac{x}{x-2}\)
2.Phân tích đa thức thành nhân tử
1)\(\left(x^2y^2-8\right)-1\)
2)\(x^3y-2x^2y+xy-xy^3\)
3)\(x^3-2x^2y+xy^2\)
4)\(x^2+2x-y^2+1\)
5)\(x^2+2x-4y^2+1\)
6)\(x^2-6x-y^2+9\)
bài 1: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
\(\dfrac{x}{x+2}-\dfrac{x}{x-2}\)
\(=\dfrac{x\left(x-2\right)-x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2-2x-x^2-2x}{\left(x-2\right)\left(x+2\right)}=-\dfrac{4x}{x^2-4}\)
Bài 2:
1: \(x^2y^2-8-1\)
\(=x^2y^2-9\)
\(=\left(xy-3\right)\left(xy+3\right)\)
2: \(x^3y-2x^2y+xy-xy^3\)
\(=xy\cdot x^2-xy\cdot2x+xy\cdot1-xy\cdot y^2\)
\(=xy\left(x^2-2x+1-y^2\right)\)
\(=xy\left[\left(x-1\right)^2-y^2\right]\)
\(=xy\left(x-1-y\right)\left(x-1+y\right)\)
3: \(x^3-2x^2y+xy^2\)
\(=x\cdot x^2-x\cdot2xy+x\cdot y^2\)
\(=x\left(x^2-2xy+y^2\right)=x\left(x-y\right)^2\)
4: \(x^2+2x-y^2+1\)
\(=\left(x^2+2x+1\right)-y^2\)
\(=\left(x+1\right)^2-y^2\)
\(=\left(x+1+y\right)\left(x+1-y\right)\)
5: \(x^2+2x-4y^2+1\)
\(=\left(x^2+2x+1\right)-4y^2\)
\(=\left(x+1\right)^2-4y^2\)
\(=\left(x+1-2y\right)\left(x+1+2y\right)\)
6: \(x^2-6x-y^2+9\)
\(=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
Thu gọn các đơn thức và đa thức sau:
a) \(\left(\dfrac{-3}{7}x^3y^2z\right)\left(\dfrac{-7}{9}yz^2\right)\)
b)\(\dfrac{5}{2}x^2y^3-3y^3x^2-y^3x^2+\dfrac{3}{2}x^2y^3\)
phân tích đa thức \(\dfrac{1}{2}x^2-2y^2\) thành nhân tử
a. \(\dfrac{1}{2}x^2-2y^2=\dfrac{1}{2}\left(x^2-4y^2\right)=\dfrac{1}{2}\left(x-2y\right)\left(x+2y\right)\)
b. \(\dfrac{1}{2}x^2-2y^2=2\left(\dfrac{1}{4}x^2-y^2\right)=2\left(\dfrac{1}{2}x-y\right)\left(\dfrac{1}{2}x+y\right)\)
Cách phân tích nào đúng, a hay b ?
phân tích đa thức \(\dfrac{1}{2}x^2-2y^2\) thành nhân tử
a. \(\dfrac{1}{2}x^2-2y^2=\dfrac{1}{2}\left(x^2-4y^2\right)=\dfrac{1}{2}\left(x-2y\right)\left(x+2y\right)\)
b. \(\dfrac{1}{2}x^2-2y^2=2\left(\dfrac{1}{4}x^2-y^2\right)=2\left(\dfrac{1}{2}x-y\right)\left(\dfrac{1}{2}x+y\right)\)
Cách phân tích nào đúng, a hay b ?
\(-\dfrac{2}{5}x^2y^5\left(5xy^2-\dfrac{1}{2}x^2y-\dfrac{7}{5}x^3\right)\)
\(=-2x^3y^7+\dfrac{1}{5}x^4y^6+\dfrac{14}{25}x^5y^5\)
Bài 1: Cho đơn thức
A=\(x^2.\left(\dfrac{-5}{4}x^2y\right)\left(\dfrac{2}{5}x^3y^4\right)\)
B=\(\left(\dfrac{-3}{4}x^4y^4\right)\left(xy^2\right)\left(\dfrac{-8}{9}x^2y^5\right)\)
Biết A>0, thì B mang dấu gì ?
Bài 2: Cho đa thức
A(x)=\(\left(x^2-5x+7\right)^4\left(x^2-3x+3\right)^{20}\)
Tính tổng các hệ số trong đa thức ?