cmr x^5/30 -x^2/6 + 2x/15 luôn nhận gt nguyên với mọi x€Z
Cho đa thức: \(B=\dfrac{x^5}{30}-\dfrac{x^3}{6}+\dfrac{2x}{15}\). CM: B luôn nhận giá trị nguyên khác 17 với mọi giá trị nguyên của x
\(B=\dfrac{x^5-5x^3+4x}{30}=\dfrac{x\left(x^4-5x^2+4\right)}{30}=\dfrac{x\left(x^2-1\right)\left(x^2-4\right)}{30}=\dfrac{x\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)}{30}=\dfrac{\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)}{30}\).
Xét x nguyên. Trong 5 số x - 2, x - 1, x, x + 1, x + 2 tồn tại 1 số chia hết cho 2, 1 số chia hết cho 3, 1 số chia hết cho 5.
Do đó (x - 2)(x - 1)x(x + 1)(x + 2) luôn nguyên với mọi x nguyên.
Mặt khác tồn tại 2 số trong 5 số x - 2, x - 1, x, x + 1, x + 2 chia hết cho 2 mà 30 chia hết cho 2 nhưng không chia hết cho 4 nên B chia hết cho 2.
Vậy B khác 17 với mọi x nguyên.
Cho các đa thức: \(A=x-5x^2+8x-4\)
\(B=\dfrac{x^5}{30}-\dfrac{x^3}{6}+\dfrac{2x}{15}\)
a) Phân tích A, B thành nhân tử
b) CM: B luôn nhận giá trị nguyên khác 17 với mọi giá trị nguyên của x
x đầu ở đa thức A là x^3 chăng?
a/ \(A=x^3-5x^2+8x-4\)
\(=\left(x^3-x^2\right)+\left(-4x^2+4\right)+\left(8x-8\right)\)
\(=x^2\left(x-1\right)-4\left(x-1\right)\left(x+1\right)+8\)
\(=\left(x-1\right)\left(x^2-4x-4\right)=\left(x-1\right)\left(x-2\right)^2\)
b/ \(B=\dfrac{x^5}{30}-\dfrac{x^3}{6}+\dfrac{2x}{15}\)
\(=\dfrac{x^5}{30}-\dfrac{5x^3}{30}+\dfrac{4x}{30}\)
\(=\dfrac{x\left(x^4-5x^2+4\right)}{30}\)
\(=\dfrac{x\left(x^4-x^2-4x^2+4\right)}{30}\)
\(=\dfrac{x\left(x+2\right)\left(x-1\right)\left(x+1\right)\left(x-2\right)}{30}\)
c/m M= (x^5)/30 - (x^3)/6 +(2x)/15 luôn nhận giá trị nguyên với mọi x thuộc Z
ta có\(\frac{x^5}{30}-\frac{x^3}{6}+\frac{2x}{15}=\frac{x^5-5x^3+4x}{30}\)
ta có A=x^5-5x^3+4x=x(x^4-5x^2+4)
=x[x^4-4x^2+4-x^2]
=x[ (x^2-2)^2-x^2 ]
=x[ (x^2-2-x)(x^2-2+x)]
=x(x-2)(x+1)(x-1)(x+2)
do A là tích của 5 số nguyên liên tiếp nên chi hết cho 5
do A chứa tích của 3 số nguyên liên tiếp nên chia hết cho 3
do A chứa tích của 2 số nguyên liên tiếp nên chia hết cho 2
mà (2,3,5) Nguyên tố vs nhau từng đôi 1 nên A\(⋮\)2.3.5 <=> A chia hết cho 30 vậy M=A/30 luôn là số nguyên vs mọi x thuộc Z
Cho: A= x^3-5x^2+8x-4
B= x^5/30-x^3/6+2x/15
a, Phân tích A và B thành nhân tử.
b, CMR: B thuộc Z khác 17 với mọi x thuộc Z
Cho A=x^3-5x^2+8x-4; B=x^5/30 - x^3/6 + 2x/15. Chứng minh:
a, Phân tích A và B thành nhân tử.
b, B là số nguyên khác 17 với mọi x thuộc Z.
Rất mong nhận được sự trợ giúp của các bạn cảm ơn rất nhiều.
Ta có
\(A=x^3-5x^2+8x-4=x^3-x^2-4x^2+4x+4x-4=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)\(=\left(x^2-4x+4\right)\left(x-1\right)=\left(x-2\right)^2\left(x-1\right)\)
cho B=x^5/30-x^3/6+2x/15. CMR B luôn nhận giá trị nguyên khác 17 với mọi giá trị nguyên của x
Cho x là số nguyên.CMR
\(M=\frac{x^5}{30}-\frac{x^3}{6}+\frac{2x}{15}\)luôn nhận giá trị nguyên
\(M=\frac{x^5}{30}-\frac{x^3}{6}+\frac{2x}{15}\)
\(=\frac{x^5}{30}-\frac{5x^3}{30}+\frac{4x}{30}\)
\(=\frac{x^5-5x^3+4x}{30}\)
\(=\frac{x\left(x^4-5x^2+4\right)}{30}\)
\(=\frac{x\left[\left(x^4-4x^2\right)-\left(x^2-4\right)\right]}{30}\)
\(=\frac{x\left[x^2\left(x^2-4\right)-\left(x^2-4\right)\right]}{30}\)
\(=\frac{x\left(x^2-1\right)\left(x^2-4\right)}{30}\)
\(=\frac{\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)}{30}\)
\(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)\) là tích của 5 số tự nguyên liên tiếp nên chia hết cho 2 , 3 , 5.
Mà các số 2 , 3 , 5 nguyên tố với nhau từng đôi một nên \(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)\)chia hết cho 2 . 3 .5 = 30
Do đó \(M\in Z\)
Vậy....
Chứng minh rằng:
a/Biểu thức:A=x2+x+1 luôn dương với mọi giá trị của x
b/Biểu thức:B= x2-x+1 luôn dương với mọi giá trị của x
c/x2+xy+y2+1>0 với mọi x;y
d/x2+4y2+z2-2x-6y+8z+15>0 với mọi x;y;z
a) \(A=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x
b) \(B=x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x
c) \(x^2+xy+y^2+1=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\) với mọi x,y
d) bạn kiểm tra lại đề câu d) nhé:
\(x^2+4y^2+z^2-2x-6y+8z+15\)
\(=\left(x-1\right)^2+\left(2y-\frac{6}{4}\right)^2+\left(z+4\right)^2-\frac{13}{4}\)
1/ CMR:
a) với mọi x khác 1 biểu thức:
P = \(\frac{x^4-x^3-x+1}{x^4+x^3+3x^2+2x+2}\) luôn nhận giá trị dương
b) với mọi x, biểu thức:
Q = \(\frac{-2x^2-2}{x^4+2x^3+6x^2+2x+5}\) luôn nhận giá trị âm
2/ Cho \(x\ne0,y\ne0,z\ne0\) và x = y+z
\(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1\)
CMR: \(\frac{1}{x^2}-\frac{1}{y^2}-\frac{1}{z^2}=1\)
3/ Cho \(a\ne0,b\ne0,c\ne0\) và
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)=\(\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}\)
CMR: x = y = z = 0