Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Văn Anh Kiệt
Xem chi tiết
alibaba nguyễn
2 tháng 8 2017 lúc 13:49

Ta có:

\(\frac{1}{\sqrt{n}-\sqrt{n+1}}=-\sqrt{n+1}-\sqrt{n}\)

\(\Rightarrow P=\frac{1}{\sqrt{2}-\sqrt{3}}-\frac{1}{\sqrt{3}-\sqrt{4}}+...+\frac{1}{\sqrt{1992}-\sqrt{1993}}\)

\(=-\sqrt{2}-\sqrt{3}+\sqrt{3}+\sqrt{4}-\sqrt{4}-\sqrt{5}+...+\sqrt{1992}+\sqrt{1993}\)

\(=\sqrt{1993}-\sqrt{2}\)

Vậy P là số vô tỉ

Nguyễn Văn Anh Kiệt
2 tháng 8 2017 lúc 13:51

sao lại biết \(\sqrt{1993}-\sqrt{2}\)là số vô tỉ

Girl Nổi Loạn
Xem chi tiết
Vi Linh Chi
Xem chi tiết
o0o I am a studious pers...
5 tháng 8 2016 lúc 15:49

Ta có : \(\sqrt{2}\)là số vô tỉ

\(\sqrt{3}\)là số vô tỉ

\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm ) 

b) tương tự :

 \(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)

\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ

Minh Thư
8 tháng 10 2019 lúc 20:53

c) \(\sqrt{2}\)là số vô tỉ nên \(1+\sqrt{2}\)là số vô tỉ

\(\Rightarrow\sqrt{1+\sqrt{2}}\)là số vô tỉ

d) \(\sqrt{3}\)là số vô tỉ\(\Rightarrow\frac{\sqrt{3}}{n}\)là số vô tỉ

\(\Rightarrow m+\frac{\sqrt{3}}{n}\)là số vô tỉ

Thi Bùi
17 tháng 7 2021 lúc 18:25

phản chứng : giả sử tất cả thuộc Q a đặt a= căn 2+ căn 3(a thuộc Q) . bình phương 2 vế ta có a^2=5+2 căn 6=> căn 6 = a^2-5/2 thuộc Q => vô lí

b đặt căn 2 + căn 3 + căn 5 = a. chuyển căn 5 sang vế a bình phương lên ta có 2 căn 6=a^2-2 căn 5 a

bình phương 1 lần nữa =>căn 5= a^4+20a^2-24/4a^3 thuộc Q => vô lí

c bình phương lên => căn 2=A-1 thuộc Q => vô lí

d tương tự căn 3=Bn-mn thuộc Q => vô lí

chúc bạn học tốt

Khách vãng lai đã xóa
Thị Hương Đoàn
Xem chi tiết
s2 Lắc Lư  s2
26 tháng 7 2016 lúc 21:50

căn 2 vô tỉ => 1+ căn 2 vô tỉ => căn của  (1+ căn 2) vô tỉ........cứ như vậy là ra

Thị Hương Đoàn
29 tháng 7 2016 lúc 12:08

nếu có dấu 3 chấm sau sô 2 cuối cùng thì làm ntn v ak?

Nguyễn Đức Lâm
Xem chi tiết
Nguyễn Minh Hoàng
23 tháng 7 2021 lúc 19:10

Giả sử \(\sqrt{2}+\sqrt{3}\) là số hữu tỉ ⇒ \(\left(\sqrt{2}+\sqrt{3}\right)^2\) ∈ Q ⇒ 2 + 2.\(\sqrt{2}.\sqrt{3}\) + 3 ∈ Q

Mà 2 và 3 ∈ Q ⇒ 2.\(\sqrt{2}.\sqrt{3}\)  ∈ Q ⇒ \(\sqrt{2}.\sqrt{3}\) ∈ Q ⇒ \(\sqrt{6}\) ∈ Q (Vô lý)

Thị Hương Đoàn
Xem chi tiết
Thị Hương Đoàn
26 tháng 7 2016 lúc 22:21

Đặt  3√2=x23=x.  xx là số vô tỉ

       c=x+x2c=x+x2 

Giả sử  cc  là số hữu tỉ thì  x2+x+1x2+x+1  là số hữu tỉ

Do  x>1x>1,  x−1x−1  là số vô tỉ nên 

     (x−1)(x2+x+1)(x−1)(x2+x+1)  là số vô tỉ   ↔x3−1↔x3−1   là số vô tỉ   ↔1↔1   là số vô tỉ  (vô lí)

Rùa Con Chậm Chạp
Xem chi tiết
Trần Thanh Phương
4 tháng 11 2018 lúc 16:02

Bài 2 :

Giả sử \(a=\sqrt{3}\)là số hữu tỉ

Khi đó ta có \(a=\sqrt{3}=\frac{m}{n}\)với m, n tối giản ( n khác 0 )

Từ \(\sqrt{3}=\frac{m}{n}\Rightarrow m=\sqrt{3}n\)

Bình phương 2 vế ta được đẳng thức: \(m^2=3n^2\)(*)

\(\Rightarrow m^2⋮3\)mà m tối giản \(\Rightarrow m⋮3\)

=> m có dạng \(3k\)

Thay m vào (*) ta có : \(9k^2=3n^2\)

\(\Leftrightarrow3k^2=n^2\)

\(\Leftrightarrow n=\sqrt{3}k\)

Vì k là số nguyên => n không là số nguyên

=> điều giả sử là sai

=> \(\sqrt{3}\)là số vô tỉ

Hoàng Khánh Thương
Xem chi tiết
Chonbi
Xem chi tiết
Darlingg🥝
17 tháng 11 2019 lúc 10:24

Thế muốn giải thích thì liệt kê đau đầu =(

\(\frac{3}{\sqrt{7}-5}-\frac{3}{\sqrt{7+5}}=\frac{-10}{9}\inℚ\)

\(\frac{\sqrt{7}+5}{\sqrt{7}-5}+\frac{\sqrt{7}-5}{\sqrt{7}+5}=12\inℚ\)

Đây là TH là số hữu tỉ còn lại.....

\(\frac{4}{2-\sqrt{3}}-\frac{4}{2+\sqrt{3}}=8\sqrt{3}\notinℚ\)

\(\frac{\sqrt{3}}{\sqrt{7}-2}-2\sqrt{7}=2-\sqrt{7}\notinℚ\)

Khách vãng lai đã xóa