Tính Tổng :
\(B=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
Mong Mọi Người Giúp đỡ
Tính tổng:
\(S=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{99\cdot100\cdot101}\)
\(S=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{99.100.101}\)
\(S=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{99.100}-\dfrac{1}{100.101}\right)\)
\(S=\dfrac{1}{4}-\dfrac{1}{2.100.101}\)
tính:\(\frac{1\cdot98+2\cdot97+3\cdot96+...+97\cdot2+98\cdot1}{1\cdot2+2\cdot3+3\cdot4+...+99\cdot100}\)
\(A=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}=\frac{1}{k}\times\left(\frac{1}{1\cdot2}-\frac{1}{99\cdot100}\right)\)
Tìm giá trị của k.
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}=\frac{1}{k}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(\Leftrightarrow\frac{1}{2}=\frac{1}{k}\Rightarrow k=2\)
Tính
\(A=1\cdot2^2+2\cdot3^2+3\cdot4^2+.....+99\cdot100^2\)
\(1.2^2+2.3^2+...+99.100^2\)
\(=1.2\left(3-1\right)+2.3\left(4-1\right)+...+99.100\left(101-1\right)\)
\(=1.2.3-1.2+2.3.4-2.3+...+99.100.101-99.100\)
\(=\left(1.2.3+2.3.4+...+99.100.101\right)\)\(-\left(1.2+2.3+...+99.100\right)\)
Chúc học tốt
\(1\cdot2+2\cdot3+3\cdot4+....+99\cdot100=\)
Gọi \(A=1×2+2×3+..+99×100\)
\(3A=1.2.3+2.3.3+...+999.100.3=1.2\left(3-0\right)+2.3\left(4-1\right)+...+98.99\left(100-97\right)=1.2.3+2.3.4-1.2.3+...-98.99.100-99.100.101=99.100.101\)
\(A=\frac{99.100.101}{3}=333300\)
\(\dfrac{7}{1\cdot2}+\dfrac{7}{2\cdot3}+\dfrac{7}{3\cdot4}+...+\dfrac{7}{99\cdot100}\)
giúp mình với mai mình phải nộp rùi!!
Ta đặt
\(A=\dfrac{7}{1\times2}+\dfrac{7}{2\times3}+...+\dfrac{7}{99\times100}\)
\(\dfrac{1}{7}\times A=\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+....+\dfrac{1}{99\times100}\)
\(\dfrac{1}{7}\times A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\dfrac{1}{7}\times A=1-\dfrac{1}{100}\)
\(\dfrac{1}{7}\times A=\dfrac{99}{100}\)
\(A=\dfrac{99}{100}\div\dfrac{1}{7}\)
\(A=\dfrac{693}{100}\)
= 7.(1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100)
= 7.(1 - 1/100)
= 7 . 99/100
= 693/100
\(A=7\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)\)
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}=\)
\(=\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{100-99}{99.100}=\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}=\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)
\(\Rightarrow A=7x\dfrac{99}{100}=6,93\)
Tính giá trị biểu thức:\(A=\frac{9}{1\cdot2}+\frac{9}{2\cdot3}+\frac{9}{3\cdot4}+...+\frac{9}{98\cdot99}+\frac{9}{99\cdot100}\)
Mọi người cố giúp e ná!!! ^_^
=9.(1/1.2 + 1/2.3+ 1/3.4 +...........+1/99.100)
=9(1-1/100)
=9.99/100
ko viết lại đầu bài đâu nhé
\(A=9\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(=9\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=9\left(1-\frac{1}{100}\right)\)
\(=9\times\frac{99}{100}\)
\(=\frac{891}{100}\)
tính tổng :
\(A=1\cdot2+2\cdot3+3\cdot4\cdot...+99\cdot100\)
Trình bày cụ thể cho mình nhé Thank you every one
Ta thấy mỗi tổng trên là tích của hai số tự nhiên liên tiếp.
\(a_1=1.2\Rightarrow3a_1=1.2.3\)\(\Rightarrow3a_1=1.2.3-0.1.2\).
\(a_2=2.3\Rightarrow3a_2=2.3.3\)\(\Rightarrow3a_2=2.3.4-1.2.3\).
.....
\(a_{99}=99.100\Rightarrow3a_{99}=3.99.100\)\(\Rightarrow3a_{99}=98.99.100-97.98.99\).
Ta có:
\(3A=1.2.3+2.3.3+3.4.3+....+99.100.3\)
\(=\)\(1.2.3-0.1.2+2.3.4-1.2.3+........+98.99.100-97.98.100\)
\(=98.99.100\)
Suy ra: \(A=\frac{98.99.100}{3}=323400\).
B=1.2+2.3+3.4+...+99.100
⇒3B=1.2.3+2.3.3+....+99.100.3
⇒3B=1.2.3+2.3.(4−1)+...+99.100.(101−98)
⇒3B=1.2.3+2.3.4−1.2.3+...+99.100.101−98.99.100
⇒3B=99.100.101
\(⇒\)
A = 1 . 2 + 2 . 3 + 3 . 4 + ... + 99 . 100
3A = 1 . 2 . 3 + 2 . 3 . 3 + 3 . 4 . 3 + ... + 99 . 100 . 3
3A = 1 . 2 . 3 + 2 . 3 . ( 4 - 1 ) + 3 . 4 . ( 5 - 2 ) + ... + 99 . 100 . ( 101 - 98 )
3A = 1 . 2 . 3 + 2 . 3 . 4 - 1 . 2 . 3 + 3 . 4 . 5 - 2 . 3 . 4 + ... + 99 . 100 . 101 - 98 . 99 . 100
3A = 99 . 100 . 101
A = 99 . 100 . 101 : 3 = 333300
Tính :
\(A=1\cdot2^2+2\cdot3^2+3\cdot4^2+...+99\cdot100^2\)
Giúp mình nha , chiều mai mình phải học rùi.
thôi đừng giúp nữa , mình nghĩ RA RỒI