Cho \(\frac{b+c}{bc}=\frac{2}{a}CMR:\frac{b}{c}=\frac{a-b}{c-a}\)(các tỉ số đều có nghĩa)
Cho a,b,c là ba số khác 0 thõa mãn:\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)(với giả thiết các tỉ số đều có nghĩa). Tính giá trị của biểu thức
M\(\frac{ab+bc+ca}{a^2+b^2+c^2}\)
Câu hỏi của Đậu Đình Kiên - Toán lớp 7 - Học toán với OnlineMath
Cho a,b,c là 3 số khác 0 thỏa mãn
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\) (với giả thiết các tỉ số đều có nghĩa )
Tính giá trị biểu thức M=\(\frac{ab+bc+ca}{a^2+b^2+c^2}\)
Từ \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\) suy ra \(\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Rightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}\\\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\\\frac{1}{c}+\frac{1}{a}=\frac{1}{a}+\frac{1}{b}\end{cases}}\)\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)
Khi đó \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)
Cho tỉ Lệ thức\(\frac{a}{b}=\frac{c}{d}\) CMR ta có các tỉ lệ thức sau:
(giả sử các tỉ lệ thức đều có nghĩa)
\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
\(\frac{a}{b}=\frac{c}{d}\) => \(\frac{a}{c}=\frac{b}{d}\)
=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)(Đpcm)
\(\frac{a}{b}=\frac{c}{d}\) => \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
=> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(Đpcm)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). CMR ta có các tỉ lệ thức sau ( giả thiết các tỉ lệ thức đều có nghĩa ) :
\(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
Giúp mik vs nha các bn !!!!!!!!! Mik đg cần rất gấp -.- :((
Ta có:
\(\left(\frac{a+b}{c+d}\right)^2\)\(=\frac{\left(a+b\right).\left(a+b\right)}{\left(c+d\right).\left(c+d\right)}\)\(=\frac{a.a+b.b}{c.c+d.d}\)\(=\frac{a^2+b^2}{c^2+d^2}\)
\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\).
Cho a/b=c/d CMR Các tỉ lệ thứcsau ( giả thiết các tỉ lệ thức đều có nghĩa )
a, \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
b, \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)
\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\left(đpcm\right)\)
b) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)
\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\left(đpcm\right)\)
Cho a, b, c thuộc R và a,b,c khác 0 thoả mãn b2=ac
CMR: \(\frac{a}{c}=\frac{\left(a+2016b\right)^2}{\left(b+2016c\right)^2}\)
(Biết rằng các tỉ số đều có nghĩa)
Ta có: b2=ac\(\Rightarrow\frac{b}{c}=\frac{a}{b}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{2016.b}{2016.c}\)(1)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{2016.b}{2016.c}=\frac{a+2016.b}{b+2016.c}\)(2)
Từ (1) và (2) ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{a+2016.b}{b+2016.c}\)
\(\Rightarrow\frac{\left(a+2016.b\right)^2}{\left(b+2016.c\right)^2}=\frac{a^2}{b^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}\)(vì \(\frac{a}{b}=\frac{b}{c}\))\(=\frac{a}{c}\)(điều phải chứng minh)
tìm x: \(x=\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\) các tỉ số đều có nghĩa
\(x=\frac{a}{b+c}=\frac{a}{a+c}=\frac{c}{a+b}\)
\(=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2a+2b+2c}\)
\(=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\).Chứng minh rằng ta có các tỉ lệ thức sau( giả thiết các tỉ lệ thức đều có nghĩa)
a,\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
b,\(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
a)\(\frac{ab}{cd}=\frac{bk.b}{dk.b}=\frac{b^2}{d^2}\left(1\right)\)
\(\frac{a^2-b^2}{c^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(2\right)\)
từ\(\left(1\right)\)và\(\left(2\right)\)\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
Cho a, b, c là ba số khác 0 thỏa mãn: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)(các giả thiết đều có nghĩa)
Tính giá trị của biểu thức:
\(M=\frac{ab+bc+ca}{a^2+b^2+c^2}\Leftrightarrow\frac{abc}{ac+bc}=\frac{abc}{ab+ac}=\frac{abc}{bc+ab}\)
Tham khảo: Câu hỏi của Đậu Đình Kiên