Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn văn kiệt
Xem chi tiết
bach nhac lam
Xem chi tiết
Akai Haruma
5 tháng 1 2020 lúc 1:14

Vì đã khuya nên não cũng không còn hoạt động tốt nữa, mình làm bài 1 thôi nhé.

Bài 1:

a)

\(2\text{VT}=\sum \frac{2bc}{a^2+2bc}=\sum (1-\frac{a^2}{a^2+2bc})=3-\sum \frac{a^2}{a^2+2bc}\)

Áp dụng BĐT Cauchy-Schwarz:

\(\sum \frac{a^2}{a^2+2bc}\geq \frac{(a+b+c)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{(a+b+c)^2}{(a+b+c)^2}=1\)

Do đó: \(2\text{VT}\leq 3-1\Rightarrow \text{VT}\leq 1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

b)

Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}=\sum \frac{ab^2}{a^2+2b^2+c^2}=\sum \frac{ab^2}{\frac{a^2+b^2+c^2}{3}+\frac{a^2+b^2+c^2}{3}+\frac{a^2+b^2+c^2}{3}+b^2}\leq \sum \frac{1}{16}\left(\frac{9ab^2}{a^2+b^2+c^2}+\frac{ab^2}{b^2}\right)\)

\(=\frac{1}{16}.\frac{9(ab^2+bc^2+ca^2)}{a^2+b^2+c^2}+\frac{a+b+c}{16}(1)\)

Áp dụng BĐT AM-GM:

\(3(ab^2+bc^2+ca^2)\leq (a^2+b^2+c^2)(a+b+c)\)

\(\Rightarrow \frac{1}{16}.\frac{9(ab^2+bc^2+ca^2)}{a^2+b^2+c^2)}\leq \frac{3}{16}(a+b+c)(2)\)

Từ $(1);(2)\Rightarrow \text{VT}\leq \frac{a+b+c}{4}$ (đpcm)

Dấu "=" xảy ra khi $a=b=c$

Khách vãng lai đã xóa
tthnew
5 tháng 1 2020 lúc 14:10

Bài 2/Áp dụng BĐT Bunyakovski:

\(\left(x^2+y^2+z^2\right)\left(1^2+3^2+5^2\right)\ge\left(x+3y+5z\right)^2\)

\(\Rightarrow P\ge\frac{\left(x+3y+5z\right)^2}{35}\) (*)

Ta có: \(x+3y+5z=x.1+\frac{y}{3}.9+\frac{z}{5}.25\)

\(=\frac{16z}{5}+8\left(\frac{y}{3}+\frac{z}{5}\right)+1\left(\frac{z}{5}+\frac{y}{3}+x\right)\)

\(\ge16+8.2+1.3=35\). Thay vào (*) là xong.

Đẳng thức xảy ra khi x = 1; y =3; z = 5

Khách vãng lai đã xóa
bach nhac lam
23 tháng 12 2019 lúc 10:44

No choice teen, Akai Haruma, Arakawa Whiter, Phạm Lan Hương, soyeon_Tiểubàng giải, tth, Nguyễn Văn Đạt

@Nguyễn Việt Lâm

giúp em với ạ! Cần gấp lắm! Thanks nhiều!

Khách vãng lai đã xóa
Baek Hyun
Xem chi tiết
Hoàng Phúc
Xem chi tiết
Minh Triều
10 tháng 8 2016 lúc 8:07

z3 ak ? hỏi thử

Hoàng Phúc
10 tháng 8 2016 lúc 8:11

z2 , nhầm chút

Hoàng Phúc
12 tháng 8 2016 lúc 22:15

à thôi, hình như trong sách của t có bài tương tự rồi ~~~
 

Cầm Dương
Xem chi tiết
dbrby
Xem chi tiết
KJ kun
Xem chi tiết
Miki Thảo
Xem chi tiết
Phạm Thúy Vy
Xem chi tiết
Kuro Kazuya
7 tháng 6 2017 lúc 18:55

\(\Sigma\left(\dfrac{x^5-x^2}{x^5+y^2+z^2}\right)\ge0\)

\(\Leftrightarrow\Sigma\left(1-\dfrac{x^5-x^2}{x^5+y^2+z^2}\right)\le3\)

\(\Leftrightarrow\Sigma\left(\dfrac{x^2+y^2+z^2}{x^5+y^2+z^2}\right)\le3\)

\(\Leftrightarrow\dfrac{1}{x^5+y^2+z^2}+\dfrac{1}{y^5+x^2+z^2}+\dfrac{1}{z^5+x^2+y^2}\le\dfrac{3}{x^2+y^2+z^2}\)

Áp dụng bất đẳng thức Bunyakovsky

\(\Rightarrow\left(x^5+y^2+z^2\right)\left(\dfrac{1}{x}+y^2+z^2\right)\ge\left(x^2+y^2+z^2\right)^2\)

\(\Rightarrow\dfrac{1}{x^5+y^2+z^2}\le\dfrac{\dfrac{1}{x}+y^2+z^2}{\left(x^2+y^2+z^2\right)^2}\)

Thiết lập tương tự và thu lại ta có

\(\Rightarrow\dfrac{1}{x^5+y^2+z^2}+\dfrac{1}{y^5+x^2+z^2}+\dfrac{1}{z^5+x^2+y^2}\le\dfrac{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+2\left(x^2+y^2+z^2\right)}{\left(x^2+y^2+z^2\right)^2}\)

Chứng minh rằng \(\dfrac{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+2\left(x^2+y^2+z^2\right)}{\left(x^2+y^2+z^2\right)^2}\le\dfrac{3}{x^2+y^2+z^2}\)

\(\Leftrightarrow\dfrac{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+2\left(x^2+y^2+z^2\right)}{\left(x^2+y^2+z^2\right)^2}\le\dfrac{x^2+y^2+z^2+2\left(x^2+y^2+z^2\right)}{\left(x^2+y^2+z^2\right)^2}\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\le x^2+y^2+z^2\) ( vì \(xyz=1\) )

\(\Leftrightarrow xy+yz+xz\le x^2+y^2+z^2\) ( luôn đúng theo hệ quả của bất đẳng thức Cauchy )

\(\Rightarrow\) đpcm

Dấu " = " xảy ra khi \(x=y=z=1\)