Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bùi huyền trang
Xem chi tiết

\(A=3-4x-x^2=-\left(x^2+4x+4\right)+7=7-\left(x+2\right)^2\ge7\forall x\)

Dấu bằng xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

    Vậy A max là 7 chỉ khi x=-2

Nguyễn Việt Hoàng
15 tháng 8 2020 lúc 9:32

b) \(7-x^2-y^2-2\left(x+y\right)\)

\(=7-x^2-y^2-2x-2y\)

\(=-x^2-2x-1-y^2-2y-1+9\)

\(=-\left(x+1\right)^2-\left(y+1\right)^2+9\le9\)

Max = 9 \(\Leftrightarrow\hept{\begin{cases}x+1=0\\y+1=0\end{cases}\Leftrightarrow}x=y=-1\)

Vậy ...................

Khách vãng lai đã xóa
Long_0711
Xem chi tiết
Phan Thị Kiều Ngân
Xem chi tiết
ShujiRin
16 tháng 8 2016 lúc 21:08

khó hiểu quá 

Phan Thị Kiều Ngân
16 tháng 8 2016 lúc 21:10

bn giải giúp mình đi

Nguyễn Hà Lan Anh
17 tháng 8 2016 lúc 8:54

1)   P = \(3+15x-5x^2\)\(=-5x^2+15x+3=-5\left(x^2-3x-\frac{3}{5}\right)\)  \(=-5\left(x^2-2.\frac{3}{2}.x+\frac{9}{4}-\frac{9}{4}-\frac{3}{5}\right)\)\(-5\left[\left(x-\frac{3}{2}\right)^2-\frac{57}{20}\right]=-5.\left(x-\frac{3}{2}\right)^2+\frac{57}{4}\)

vì \(\left(x-\frac{3}{2}\right)^2>=0\) => \(-5.\left(x-\frac{3}{2}\right)^2+\frac{57}{4}>=0\)  =>\(-5.\left(x-\frac{3}{2}\right)^2+\frac{57}{4}>=\frac{57}{4}\)

 => GTLN  của P là \(\frac{57}{4}\)tại x =\(\frac{3}{2}\)

2) GTNN của B là -36

Nguyễn Hải Anh
Xem chi tiết
Lương Thị Lan
Xem chi tiết
Hieu
Xem chi tiết
Trần Tuấn Hoàng
27 tháng 2 2022 lúc 21:15

\(A=\dfrac{6x^2+21x+22}{x^2+4x+4}\)

\(=\dfrac{6\left(x^2+4x+4\right)-3x-2}{x^2+4x+4}\)

\(=6+\dfrac{-3x-2}{\left(x+2\right)^2}\)

\(=6+\dfrac{-3\left(x+2\right)+4}{\left(x+2\right)^2}\)

\(=6-\dfrac{3}{x+2}+\dfrac{4}{\left(x+2\right)^2}\)

-Đặt \(a=\dfrac{1}{x+2}\) thì:

\(A=6-3a+4a^2=\left(2a\right)^2-2.2a.\dfrac{3}{4}+\dfrac{9}{16}+\dfrac{87}{16}=\left(2a-\dfrac{3}{4}\right)^2+\dfrac{87}{16}\ge\dfrac{87}{16}\)

\(A_{min}=\dfrac{87}{16}\)\(\Leftrightarrow\left(2a-\dfrac{3}{4}\right)^2=0\Leftrightarrow2a-\dfrac{3}{4}=0\Leftrightarrow2a=\dfrac{3}{4}\)

\(\Leftrightarrow2.\dfrac{1}{x+2}=\dfrac{3}{4}\Leftrightarrow\dfrac{1}{x+2}=\dfrac{3}{8}\Leftrightarrow x+2=\dfrac{8}{3}\Leftrightarrow x=\dfrac{2}{3}\)

Lê Thị Dao
Xem chi tiết
Lê Hà Phương
5 tháng 8 2016 lúc 19:58

\(A=\frac{1}{\left|x-2\right|+3}\)

Để x đạt giá trị lớn nhất thì \(\left|x-2\right|+3\) đạt giá trị nhỏ nhất

Có: \(\left|x-2\right|\ge0\Rightarrow\left|x-2\right|+3\ge3\)

Dấu bằng xảy ra khi \(x-2=0\Rightarrow x=2\)

Vậy \(Max_A=\frac{1}{3}\)tại \(x=2\)

o0o I am a studious pers...
5 tháng 8 2016 lúc 19:55

\(A=\frac{1}{\left|x+2\right|}+3\)Trường hợp : \(x+2\ne0\Rightarrow x=-2\)

Ta có : \(\left|x+2\right|>0\Rightarrow\frac{1}{\left|x+2\right|}>0\)

\(\Rightarrow A=\frac{1}{\left|x+2\right|}+3\ge3\)

MAx \(A=3\Leftrightarrow\frac{1}{\left|x+2\right|}=0\left(vôlys\right)\)

Vậy A ko tồn tại giá trị lớn nhất

Quỳnh Anh
Xem chi tiết
Phạm Quang Linh
Xem chi tiết