Cho hình thang ABCD (AB song song CD). Tia phân giác góc D đi qua trung điểm E của BC. Chứng minh:
a) AD = AB + DC
b) AE là đường phân giác của góc DAB
Bài 5: Cho hình thang ABCD (AB // CD). Tia phân giác của góc D đi qua trung điểm E của BC. Chứng minh:
1. AD = AB + CD?
2. AE là phân giác của góc DAB ?
Kẻ F la trung điểm AD
\(\left\{{}\begin{matrix}AF=FD\\BE=EC\end{matrix}\right.\Rightarrow EF\) là đtb hthang ABCD
\(\Rightarrow EF//AB//CD;2EF=AB+CD\left(1\right)\)
\(\left\{{}\begin{matrix}\widehat{D_2}=\widehat{E_1}\left(so.le.trong\right)\\\widehat{D_1}=\widehat{D_2}\left(t/c.phân.giác\right)\end{matrix}\right.\Rightarrow\widehat{D_1}=\widehat{E_1}\Rightarrow\Delta DEF.cân\Rightarrow DF=EF\)
Mà \(DF=\dfrac{1}{2}AD\left(F.là.trung.điểm.AD\right)\Rightarrow EF=\dfrac{1}{2}AD\)
\(\Rightarrow2EF=AD\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow AD=AB+CD\)
\(2,EF=\dfrac{1}{2}AD\Rightarrow\Delta AED\) vuông tại E
\(\Rightarrow\widehat{A_1}+\widehat{D_1}=90^0\)
Mà \(\widehat{D_1}+\widehat{E_2}=\widehat{E_1}+\widehat{E_2}=90^0\)
\(\Rightarrow\widehat{A_1}=\widehat{E_2}\left(3\right)\)
Mà \(AB//EF\Rightarrow\widehat{E_2}=\widehat{A_2}\left(4\right)\)
\(\left(3\right)\left(4\right)\Rightarrow\widehat{A_1}=\widehat{A_2}\Rightarrow AE\) là p/g \(\widehat{DAB}\)
a: Xét ΔABE và ΔFCE có
góc EBA=góc ECF
EB=EC
góc BEA=góc CEF
=>ΔABE=ΔFCE
=>EA=EF
=>E là trung điểm của AF
b: Xét ΔDAF có
DE vừa là phân giác, vừa là trung tuyến
=>ΔDAF cân tại D
=>DA=DF=DC+CF=DC+AB
c: góc BAE=góc AFD
=>góc BAE=góc DAE
=>AE là phân giác góc DAB
cho hình thang ABCD có AB//CD . tia phân giác góc D đi qua trung điểm E của BC . chứng minh
a ) AD=AB+CD
b) AE là tia phân giác góc BAD
Hình thang ABCD có AB song song CD cóAB < CD , Các tia phân giác của góc A và D cắt nhau ở E . Các tia phân giác của các góc B và C cắt nhau ở F . Gọi M,N theo thứ tự là trung điểm của AD,BC . Gọi G là giao điểm của AE và CD .
a) Chứng minh: AED=90 độ và AE=EG .
b) Chứng minh: M,E,F,N thẳng hàng
c) Tính các độ dài MN,ME,FN theo .a,b,c,d
LÀM GẤP GIÚP E CÁI Ạ
Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang
Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:
a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông
Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB
Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF
Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:
a) AE vuông góc với DB
b) AD // BE và AD = BE
c) E là trung điểm của DC
d) Xác định dạng của tứ giác BCEO
e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
Bài 5: Cho hình thang ABCD (AB//CD), biết Ax,Dy lần lượt là phân giác của góc A, góc D của hình thang. Chứng minh Ax vuông góc với Dy
Bài 6: Cho hình thang ABCD (AB//CD,AB<CD). Qua B kẻ đường thẳng song song với AD cắt CD tại E. Chứng minh:
a) AD=BE , AB=DE
b) CD-AB=CE
c) BC+AD>CD_AB
Bài 5
\(\widehat{A}+\widehat{D}=180^o\) (Hai góc trong cùng phía bù nhau)
\(\widehat{DAx}=\widehat{BAx}=\dfrac{\widehat{A}}{2}\) (gt)
\(\widehat{ADy}+\widehat{CDy}=\dfrac{\widehat{D}}{2}\) (gt)
\(\Rightarrow\widehat{DAx}+\widehat{ADy}=\dfrac{\widehat{A}}{2}+\dfrac{\widehat{D}}{2}=\dfrac{180^o}{2}=90^o\)
Xét tg ADE có
\(\widehat{AED}=180^o-\left(\widehat{DAx}+\widehat{ADy}\right)=180^o-90^o=90^o\) (Tổng các góc trong của tg bằng 180 độ)
\(\Rightarrow Ax\perp Dy\)
Bài 6:
a/
Ta có
AB//CD => AB//DE
BE//AB (gt)
=> ABED là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
=> AB = DE; AD = BE (Trong hình bình hành các cạnh đối nhau thì bằng nhau)
b/
CD - DE = CE
Mà AB = DE (cmt)
=> CD - AB = CE
c/
Xét tg BCE có
BC+BE>CE (trong tg tổng độ dài 2 cạnh lớn hơn độ dài cạnh còn lại)
Mà CE = CD - DE và DE = AB (cmt) và BE = AD
=> BC+BE = BC + AD>CE = CD - AB
Gọi G là giao điểm của hai đường phân giác Ax và By
Ta có: \(\widehat{ADG}\) = \(\dfrac{1}{2}\)\(\widehat{ADE}\) ( vì DG là phân giác góc ADE)
\(\widehat{DAG}\) = \(\dfrac{1}{2}\)\(\widehat{DAB}\)( vì AG là phân giác góc DAB )
⇒ \(\widehat{ADG}\) + \(\widehat{DAG}\) = \(\dfrac{1}{2}\)\(\widehat{ADE}\) + \(\dfrac{1}{2}\)\(\widehat{DAB}\) = \(\dfrac{1}{2}\)(\(\widehat{ADE}\) + \(\widehat{DAB}\))
\(\widehat{ADE}\) + \(\widehat{DAB}\) = 1800 (vì hai góc là hai góc trong cùng phía)
⇒ \(\widehat{ADG}\) + \(\widehat{DAG}\) = \(\dfrac{1}{2}\) \(\times\) 1800 = 900
Xét tam giác ADG có: \(\widehat{GAD}\) + \(\widehat{ADG}\) + \(\widehat{DGA}\) = 1800 (tổng ba góc trong 1 tam giác bằng 1800)
⇒ \(\widehat{DGA}\) = 1800 - 900 = 900
Vậy tam giác ADG vuông tại G ⇒AE \(\perp\) DG (đpcm)
Cho hình thang ABCD (AB ∥ CD) có DB là đường phân giác của góc D, AE là đường phân giác của
góc A (E ∈ CD). Biết AE ∥ BC và O là giao điểm của AE và DB. Chứng minh rằng
a) AE ⊥ BD.
b) AD ∥ BE và AD = BE.
c) E là trung điểm của DC
d) Xác định dạng của tứ giác BCEO
e) .Biết góc BEC = 80độ Tính các góc của hình thang ABCD.
Bài 1; Cho hình thang ABCD (AD//BC), phân giác góc A cắt BC tại E
a) Chứng minh rằng AB=BE
b)Phân giác góc B cắt AE tại F. Chứng minh BF vuông góc AE và FA=FE
c) Gọi M là trung điểm của AB và N là trung điểm của CD. Chứng minh M,F,N thẳng hàng
Bài 2; Cho hình thang ABCD (AB//CD) có AB+BC=CD . Chúng minh tia phân giác góc A và góc B cắt nhau tại 1 điểm nằm trên đáy CD
Bài 3 Cho hình thang ABCD (AB//CD) , tia phân giác góc A và góc B cắt nhau tại 1 điểm nằm trên đáy CD . Chứng minh AD+BC=CD
Câu hỏi của Hồ Phong Thư - Toán lớp 8 - Học toán với OnlineMath
1.Cho hình thang ABCD (AB song song với CD), M là trung điểm BC. Cho biết DM là phân giác của góc D. Chứng minh AM là phân giác của góc A.
2. Cho tứ giác ABCD có AD=AB=BC và góc A+góc C= 180 độ. Chứng minh rằng:
a)DB là phân giác của góc D
b)ABCD là hình thanh cân
BÀI 1: Cho tam giác ABC có D, E, F theo thứ tự là trung điểm của AB, AC, BC. Chứng minh BDEF là hình bình hành và suy ra
BÀI 2: Cho hình bình hành ABCD (AB < CD). Tia phân giác của góc A cắt BC tại I, tia phân giác góc C cắt AD tại K. Chứng minh: AICK là hình bình hành.
BÀI 3: Cho tam giác ABC. Đường thẳng qua B song song với AC cắt đường thẳng qua C song song với AB ở D.
a) Chứng minh rằng tư giác ABDC là hình bình hành.
b) Gọi M là trung điểm cạnh BC. Chứng minh rằng ba điểm A, M, D thẳng hàng.