cho a,b nguyên dương và a+1;b+2007 chia hết cho 6.Chứng minh rằng:4a+a+b chia hết cho 6
a) tìm số nguyên dương a sao cho a2017+a2015+1 là số nguyên tố
b) với a,b là các số nguyên dương sao cho a+1 và b+2013 chia hết cho 6 . C/m an+a+b chia hết cho 6
a; Đặt A= \(a^{2017}+a^{2015}+1\)
\(=a^4\left(a^{2013}-1\right)+a^2\left(a^{2013}-1\right)+a^4+a^2+1\)=\(a^4\left(\left(a^3\right)^{671}-1\right)+a^2\left(\left(a^3\right)^{671}-1\right)+\left(a^2+a+1\right)\left(a^2-a+1\right)\)
= \(\left(a^2+a+1\right)F\left(a\right)\) (trong đó F(a) là đa thức chứa a)
\(\Rightarrow A\) chia hết cho \(a^2+a+1\)
do \(a^2+a+1\) > 1 (dễ cm đc)
mà A là số nguyên tố
\(\Rightarrow A=a^2+a+1\)
hay \(a^{2017}+a^{2015}+1=a^2+a+1\)
\(\Leftrightarrow a\left(a\left(a^{2015}-1\right)+\left(a^{2014}-1\right)\right)=0\)
\(\Leftrightarrow a\left(a-1\right).G\left(a\right)=0\) ( bạn đặt nhân tử chung ra)
do a dương => a>0 => a-1=0=> a=1(t/m)
Kết Luận:...
chỗ nào bạn chưa hiểu cứ nói cho mình nha :3
- Tích đúng hoặc sai vào các câu sau:
1.Tập hợp số nguyên bao gồm các số nguyên âm và các số nguyên dương
2.Tổng của hai số nguyên âm là một số nguyên dương
3.Tích của ba số nguyên âm và hai số nguyên dương là 1 số nguyên âm
4.Nếu a < thì /a/ = -a
5.Cho a thuộc N thì (-a) là số nguyên âm
6.Cho a,b thuộc Z,nếu /a/ = /b/ thì a=b
Cho a,b nguyên dương thỏa \(\frac{a+1}{b}+\frac{b+1}{a}\) cũng nguyên dương. Gọi d là ước dương của a và b. Chứng minh rằng \(d\le\sqrt{a+b}\)
d là ước dương của a và b suy ra: \(\hept{\begin{cases}a=d.a^'\\b=d.b^'\end{cases}}\)
có \(\frac{a+1}{b}+\frac{b+1}{a}\)nguyên dương suy ra \(\frac{a^2+b^2+a+b}{ab}\)nguyên dương\(\Rightarrow a^2+b^2+a+b\)chia hết cho a.b
có \(a.b=d.a^'.d.b^'=a^'.b^'d^2\Rightarrow a^2+b^2+a+b\)chia hết cho \(d^2\)
ta có: \(a^2+b^2+a+b=d^2.\left(a^'\right)^2+d^2\left(b^'\right)^2+d.a^'+d.b^'\)
\(=d\left(d\left(a^'\right)^2+d\left(b^'\right)^2+a^'+b^'\right)\)chia hết cho \(d^2\)
suy ra \(d\left(a^'\right)^2+d\left(b^'\right)^2+a^'+b^'=d\left(a^'+b^'\right)+a^'+b^'\)chia hết cho d \(\Rightarrow a^'+b^'\)chia hết cho d.\(\Rightarrow a^'+b^'\ge d\Leftrightarrow d.a^'+d.b^'\ge d^2\Leftrightarrow a+b\ge d^2\Leftrightarrow d\le\sqrt{a+b}\)
tìm tất cả các số nguyên dương n sao cho n được viết dưới dạng a^2 +b^2, trong đó a là ước nguyên dương nhỏ nhất của n (a khác 1) và b là một ước nguyên dương nào đó của n
Cho hai số nguyên dương a và b có ước chung lớn nhất bằng 1. Biết ab bằng lập phương của số nguyên dương. Chứng minh a bang lập phương của số nguyên dương
Cho hai số nguyên dương a và b có ước chung lớn nhất bằng 1. Biết ab bằng lập phương của số nguyên dương. Chứng minh a bằng lập phương của số nguyên dương
Tìm số nguyên dương a và b sao cho: 1/a+1/b=1/2
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{2}\left(a;b\ne0\right)\)
=> \(\frac{a+b}{ab}=\frac{1}{2}\)
=> \(\frac{a+b}{ab}.2ab=\frac{1}{2}.2ab\)
=> 2(a + b) = ab
=> 2a + 2b = ab
=> ab - 2a - 2b = 0
=> ab - 2a - 2b + 4 = 4
=> a(b - 2) - 2(b - 2) = 4
=> (a - 2)(b - 2) = 4
Nhận thấy \(a;b\inℤ\Rightarrow a-2;b-2\inℤ\)
Khi đó ta có 4 = 1.4 = 2.2 = (-2).(-2) = (-4).(-1)
Lập bảng xét các trường hợp
a - 2 | 1 | 4 | 2 | -2 | -1 | -4 |
b - 2 | 4 | 1 | 2 | -2 | -4 | -1 |
a | 3 | 6 | 4 | 0 | 1 | -2 |
b | 6 | 3 | 4 | 0 | -2 | 1 |
Vậy các cặp (a;b) nguyên dương thỏa mãn là (3;6) ; (6;3) ; (4;4)
Cho các số nguyên dương a > b thỏa mãn: ab − 1 và a + b nguyên tố cùng
nhau; ab + 1 và a − b nguyên tố cùng nhau. Chứng minh rằng: (a + b)^2 + (ab-1)^2 không phải là một số chính phương.
thật ra nó là lớp 7 đấy nhưng mình nghĩ lớp 8 mới giỏi mói giải đc
Giả sử \(a^2+1\) và \(b^2+1\) cùng chia hết cho số nguyên tố p
\(\Rightarrow a^2-b^2⋮p\)
\(\Rightarrow\left(a-b\right)\left(a+b\right)⋮p\Rightarrow\left[{}\begin{matrix}a-b⋮p\\a+b⋮p\end{matrix}\right.\).
+) Nếu \(a-b⋮p\) thì ta có \(\left(a^2+1\right)\left(b^2+1\right)-\left(a-b\right)^2⋮p\Rightarrow\left(ab+1\right)^2⋮p\Rightarrow ab+1⋮p\) (vô lí do (a - b, ab + 1) = 1)
+) Nếu \(a+b⋮p\) thì tương tự ta có \(ab-1⋮p\). (vô lí)
Do đó \(\left(a^2+1,b^2+1\right)=1\).
Giả sử \(\left(a+b\right)^2+\left(ab-1\right)^2=c^2\) với \(c\in\mathbb{N*}\)
Khi đó ta có \(\left(a^2+1\right)\left(b^2+1\right)=c^2\).
Mà \(\left(a^2+1,b^2+1\right)=1\) nên theo bổ đề về số chính phương, ta có \(a^2+1\) và \(b^2+1\) là các số chính phương.
Đặt \(a^2+1=d^2(d\in\mathbb{N*})\Rightarrow (d-a)(d+a)=1\Rightarrow d=1;a=0\), vô lí.
Vậy ....
Cho tập A gồm 6 số nguyên, trong đó có 2 số nguyên dương và 4 số nguyên âm. Tập B gồm 4 số nguyên âm và 1 số nguyên dương. Lấy ngẫu nhiên 1 số của tập A và 1 số của tập B, sau đó lấy tích của 2 số đó. Hỏi có bao nhiêu trường hợp cho kết quả là một số nguyên ?
Viết 1/1 + 1/2 + ... + 1/100 =a/b và a và b là 2 số nguyên dương va nguyên tố cùng nhau.CMR a chia hết cho 101. help mik mik tick cho huhu
help mik cần gấp mai mik ktra học kì r :(((