cho hình thang abcd ab song song với cd. 2 đường chéo cắt nhau tại O. 2 đường thẳng chứa 2 cạnh bên cắt nhau tại I. gọi M,N là trung điểm của AB,CD. CMR 4 điểm O,I,M,N thẳng hàng
Cho hình thang ABCD có AB song song CD ( AB<CD) và M là trung điểm của AD. Qua M vẽ đường thẳng song song với 2 đáy của hình thang cắt cạnh bên BC tại N và cắt 2 đường chéo BD và AC lần lượt tại E,F.
a)Chứng minh rằng N,E,F lần lượt là trung điểm của BC,BD,AC.
b)Gọi I là trung điểm của AB. Đường thẳng vuông góc với IE tại E và đường thẳng vuông góc với IF tại F cắt nhau ở K.Chứng minh KC=KD
cho hình thang ABCD có AB song song CD ( AB< CD) và M là trung điểm của AD. Qua M vẽ đường thẳng song song với 2 đáy của hình thang cắt cạnh bên BC tại N và cắt 2 đường chéo BD và AC lần lượt tại E. F.
a) Chứng mình rằng N, E, F lần lượt là trung điể cạnh BC , BD, AC.
b) Gọi I là trung điểm của AB. Đuo82ng thẳng vuông góc với IE tại E và đường thẳng vuông góc với IF tại F cắt nhau ở K. Chứng minh KC = KD.
cho hình thang ABCD có AB song song CD ( AB< CD) và M là trung điểm của AD. Qua M vẽ đường thẳng song song với 2 đáy của hình thang cắt cạnh bên BC tại N và cắt 2 đường chéo BD và AC lần lượt tại E. F.
a) Chứng mình rằng N, E, F lần lượt là trung điể cạnh BC , BD, AC.
b) Gọi I là trung điểm của AB. Đuo82ng thẳng vuông góc với IE tại E và đường thẳng vuông góc với IF tại F cắt nhau ở K. Chứng minh KC = KD.
a) Ta có:
+) M là trung điểm của AD và MN // CD
MN là đường trung bình của hình thang ABCD
N là trung điểm của BC
+) M là trung điểm của AB và ME // AB
ME là đường trung...
= một vé báo cáo chứ sao khó ợt
cho hình thang ABCD có AB song song CD ( AB< CD) và M là trung điểm của AD. Qua M vẽ đường thẳng song song với 2 đáy của hình thang cắt cạnh bên BC tại N và cắt 2 đường chéo BD và AC lần lượt tại E. F.
a) Chứng mình rằng N, E, F lần lượt là trung điể cạnh BC , BD, AC.
b) Gọi I là trung điểm của AB. Đuo82ng thẳng vuông góc với IE tại E và đường thẳng vuông góc với IF tại F cắt nhau ở K. Chứng minh KC = KD.
Gọi H là trung điểm DC.
Chứng minh HE// IF( vì cùng //BC)
=> HE vuông FK ( vì FK vuông IF)
Tương tự HF// EI( vì cùng //AD)
=> HF vuông EK( vì EK vuông IE)
Xét tam giác EFH có EK và FK là 2 đường cao nên K là trực tâm. Suy ra HK vuông FE mà FE //DC nên HK vuông DC tại H suy ra tam giác KDC cân tại K. Nên KD=KC
Cho hình thang ABCD có đáy AB<CD và O là giao điểm hai đường chéo . Từ trung điểm M của AB kẻ đường thảng MO cắt CD tại N
a)CM: N là trung điểm của CD
b) Kóe dài CD và BC cắt nhau tại I . Cm: I,M,N,O thẳng hàng
c) Qua O kẻ đường thẳng d song song với AB và CD ,cắt AD và BC lần lượt tại B và F
CM: O là trung điểm của EF
1)cho tam giác abc có trung tuyến am,N là trung điểm am,bn cắt ac tại d.Tính tỉ số dn/db.
2)Cho hình thang abcd (ab//cd).Gọi o là giao điểm 2 đường chéo.Đường thẳng qua o và song song hai đáy cắt 2 cạnh bên tại m và n.Chứng minh om=on và 2/mn = 1/ab + 1/cd
3)Cho hình thanh abcd (ab//cd) .Gọi o là giao điểm hai đường chéo,i là giao điểm 2 cạnh bên.io cắt ab tại m và cd tại n.Chứng minh ma=mb ;nc=nd
Cho hình thang cân ABCD có AB//CD và AB<CD. Gọi O là giao của 2 cạnh bên. CMR. Tam giác OAB cân
b,Gọi I là trung điểm của AB, K là trung điểm của CD . CM O,I,K thẳng hàng
c,TỪ M thuộc AD, kẻ đường thẳng song song với DC cắt BC ở N. CM MNCD là hình thang cân
xét hình thang cân ABCD có AB//CD(gt)
\(\Rightarrow\)^CDA=^BAO(2 góc đồng vị) và ^DCB=^ABO
Do ABCD là hìng thang cân nên ^CDA=^DCB
nên ^BAO=^ABO
Xét tam giác ABO có
^BAO=^ABO nên tam giác ABO cân(đpcm)
Cho hình thang cân ABCD (AB//CD, AB<CD)AD cắt BC tại O
a) CMR tam giác OAB cân
b)Gọi I,J lần lượt là trung điểm của AB và CD. CMR ba điểm I,J,O thẳng hàng
c) Quan điểm M thuộc cạnh AC, vẽ đường thẳng song song với CD, cắt BD tại N. CMR MNAB,MNCD là hình thang cân
Bài 2:
Xét ΔADC có OM//DC
nen OM/DC=AM/AD(1)
Xét ΔBDC có ON//DC
nên ON/DC=BN/BC(2)
Xét hình thag ABCD có MN//AB//CD
nên AM/AD=BN/BC(3)
Từ (1) (2)và (3) suy ra OM=ON