\(CM,\frac{1}{2}+\frac{1}{3}+...+\frac{1}{63}>2\)
\(CM:\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}>2\)
\(CM:\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}>2\)
CM : S = 1+63+\(\frac{63}{2}+\frac{62}{3}+....+\frac{2}{63}+\frac{1}{64}\)
Lớn hơn 196
\(CM:\frac{1}{2}+\frac{1}{3}+...+\frac{1}{63}>2\)
Bạn xét :
1/2 + 1/3 + 1/4 > 1
Thì : 1/5 + 1/6 + 1/7 + 1/8 + ...> 1
Vậy : 1/2 + 1/3 + 1/4 + ... 1/63 > 2
Ta có: 1/2 + 1/3 + 1/4 = 6/12 + 4/12 + 3/12 = 13/12 > 1
Và 1/5 + 1/6 + 1/7 + 1/8 + ... + 1/63 > 1
Suy ra 1/2 + 1/3 + ... + 1/63 > 1+1
Suy ra 1/2 + 1/3 + ... + 1/63 > 2
Vậy 1/2 + 1/3 + ... + 1/63 > 2
Chúc bạn học tốt
cm :\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{63}>2\)
các bạn giúp mk mau lên nha
B=\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\)
C=\(1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)
Cho 3 số dương a,b,c thỏa mãn \(a^2+b^2+c^2=27\). Chứng minh: \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{12}{a^2+63}+\frac{12}{b^2+63}+\frac{12}{c^2+63}\)
Cần CM: \(\frac{1}{9-a}-\frac{12}{a^2+63}\ge\frac{1}{144}a^2-\frac{1}{16}\) (1)
\(\Leftrightarrow\)\(\frac{a^2+12a-45}{\left(9-a\right)\left(a^2+63\right)}\ge\frac{1}{144}a^2-\frac{1}{16}\)
\(\Leftrightarrow\)\(144\left(a^2+12a-45\right)\ge\left(a-3\right)\left(a+3\right)\left(9-a\right)\left(a^2+63\right)\)
\(\Leftrightarrow\)\(\left(a-3\right)\left[144\left(a+15\right)-\left(a+3\right)\left(9-a\right)\left(a^2+63\right)\right]\ge0\)
\(\Leftrightarrow\)\(\left(a-3\right)\left(a^4-6a^3+36a^2-234a+459\right)\ge0\)
\(\Leftrightarrow\)\(\left(a-3\right)^2\left(a^3-3a^2+27a+153\right)\ge0\)
\(\Leftrightarrow\)\(\left(a-3\right)^2\left[\left(a-3\right)^2\left(a+3\right)+36a+126\right]\ge0\) ( đúng )
Do đó (1) đúng => \(\Sigma_{cyc}\frac{1}{9-a}-\Sigma_{cyc}\frac{12}{a^2+63}\ge\frac{1}{144}\left(a^2+b^2+c^2\right)-\frac{3}{16}=0\)
\(\Rightarrow\)\(\Sigma_{cyc}\frac{12}{a^2+63}\le\Sigma_{cyc}\frac{1}{9-a}\le\Sigma_{cyc}\frac{1}{a+b}\) ( do \(a+b+c\le9\) )
Dấu "=" xảy ra khi a=b=c=3
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}>2\) \(C=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\)
\(B=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\) \(D=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{9999}{10000}< \frac{1}{100}\)
Mọi người giúp mik nhé, mik đang ôn thi nên cần gấp!
chứng minh:
B=\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\)
C=\(1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)
b, Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
..................
\(\frac{1}{100^2}< \frac{1}{99.100}\)
Nên C < \(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{99.100}\)
<=> C < \(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{99}-\frac{1}{100}\)
<=> C < \(1+1-\frac{1}{100}\)
<=> C < \(2-\frac{1}{100}=\frac{199}{100}\)
\(B=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+...+\left(\frac{1}{2^5}+...+\frac{1}{2^6-1}\right)\)
\(B< 1+\frac{1}{2}.2+\frac{1}{4}.4+...+\frac{1}{2^5}.32\)
\(B< 1+1+1+...+1\)( 6 số 1)
B<1.6=6
\(C=1+\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)
\(C< 1+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.10}\right)=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)\(=1+\left(1-\frac{1}{100}\right)< 1+1=2\)
Vậy C<2
C<1+1/1.2+1/2.3+...+1/99.100
=>C<1+1/1-1/100
<=>C<1+99/100
=>C<199/200
=>C<2
BẠN TỰ GIẢI CHI TIẾT HƠN NHA ^_^
MÌNH GIẢI HƠI TẮT CHÚT :))