\(CM:\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}>2\)
\(CM:\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}>2\)
\(CM:\frac{1}{2}+\frac{1}{3}+...+\frac{1}{63}>2\)
cm :\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{63}>2\)
các bạn giúp mk mau lên nha
B=\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\)
C=\(1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}>2\) \(C=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\)
\(B=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\) \(D=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{9999}{10000}< \frac{1}{100}\)
Mọi người giúp mik nhé, mik đang ôn thi nên cần gấp!
chứng minh:
B=\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\)
C=\(1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)
Chứng minh rằng: \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}>2\)2
Chứng minh rằng H>2
\(H=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+.......+\frac{1}{63}\)