Biến đổi thành tích: A= cosx + cos3x + cos5x + cos7x
9. Rút gọn các biểu thức sau
A= cos7x - cos8x - cos9x + cos10x / sin7x - sin8x - sin9x + sin10x
B = sin2x + 2sin3x + sin4x / sin3x +2sin4x + sin5x
C= 1+cosx + cos2x + cos3x / cosx + 2cos^2 . x -1
D = sin4x + sin5x + sin6x / cos4x + cos5x + cos6x
\(D=\frac{sin4x+sin5x+sin6x}{cos4x+cos5x+cos6x}\)
\(=\frac{\left(sin4x+sin6x\right)+sin5x}{\left(cos4x+cos6x\right)+cos5x}\)
\(=\frac{2sin\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+sin5x}{2cos\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+cos5x}\)
\(=\frac{2sin5x.cos\left(-x\right)+sin5x}{2cos5x.cos\left(-x\right)+cos5x}=\frac{sin5x\left(2.cos\left(-x\right)+1\right)}{cos5x\left(2.cos\left(-x\right)+1\right)}=\frac{sin5x}{cos5x}=tan5x\)
Tìm x để A=1, biết A=\(\frac{cos3x+cos5x+cos7x+cos9x}{sin3x+sin5x+sin7x+sin9x}\)
\(A=\frac{cos3x+cos9x+cos5x+cos7x}{sin3x+sin9x+sin5x+sin7x}=\frac{2cos6x.cos3x+2cos6x.cosx}{2sin6x.cos3x+2sin6x.cosx}\)
\(=\frac{2cos6x\left(cos3x+cosx\right)}{2sin6x\left(cos3x+cosx\right)}=tan6x\)
\(A=1\Rightarrow tan6x=1\Rightarrow x=\frac{\pi}{24}+\frac{k\pi}{6}\)
Giải phương trình
sin7x+sinx=sin10x+sin4x
cos5x+cos3x=cos9x+cos7x
a/
\(\Leftrightarrow2sin4x.cos3x=2sin7x.cos3x\)
\(\Leftrightarrow\left[{}\begin{matrix}cos3x=0\\sin7x=sin4x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=\frac{\pi}{2}+k\pi\\7x=4x+k2\pi\\7x=\pi-4x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k\pi}{3}\\x=\frac{k2\pi}{3}\\x=\frac{\pi}{11}+\frac{k2\pi}{11}\end{matrix}\right.\)
b.
\(\Leftrightarrow2cos4x.cosx=2cos8x.cosx\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos8x=cos4x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\8x=4x+k2\pi\\8x=-4x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{k\pi}{2}\\x=\frac{k\pi}{6}\end{matrix}\right.\) \(\Leftrightarrow x=\frac{k\pi}{6}\)
sử dụng công thức biến đổi tích thành tổng hay tổng thành tích để giải các phương trình sau :
a) \(\cos x\cos5x=\cos2x\cos4x\)
b) \(\cos5x\sin4x=\cos3x\sin2x\)
c) \(\sin2x+\sin4x=\sin6x\)
d) \(\sin x+\sin2x=\cos x+\cos2x\)
sử dụng công thức biến đổi tích thành tổng hay tổng thành tích để giải các phương trình sau :
a) \(\cos x\cos5x=\cos2x\cos4x\)
b) \(\cos5x\sin4x=\cos3x\sin2x\)
c) \(\sin2x+\sin4x=\sin6x\)
d) \(\sin x+\sin2x=\cos x+\cos2x\)
sử dụng công thức biến đổi tích thành tổng hay tổng thành tích để giải các phương trình sau :
a) \(\cos x\cos5x=\cos2x\cos4x\)
b) \(\cos5x\cos4x=\cos3x\cos2x\)
c) \(\sin2x+\sin4x=\sin6x\)
d) \(\sin x+\sin2x=\cos x+\cos2x\)
sử dụng công thức biến đổi tích thành tổng hay tổng thành tích để giải các phương trình sau :
a) \(\cos x\cos5x=\cos2x\cos4x\)
b) \(\cos5x\sin4x=\cos3x\sin2x\)
c) \(\sin2x+\sin4x=\sin6x\)
d) \(\sin x+\sin2x=\cos x+\cos2x\)
Rút gọn các biểu thức sau:
D = \(\frac{1+sin2x+cos2x}{1+sin2x-cos2x}\)E = \(\frac{sin2x+2sin3x+sin4x}{cos3x+2cos4x-cos5x}\)F = \(\frac{sinx+sin4x+sin7x}{cosx+cos4x+cos7x}\)G = \(\frac{cos2x-sin4x-cos6x}{cos2x+sin4x-cos6x}\)\(D=\frac{1+sin2x+cos2x}{1+sin2x-cos2x}=\frac{1+2sinxcosx+2cos^2x-1}{1+2sinxcosx-1+2sin^2x}\)
\(D=\frac{cosx\left(sinx+cosx\right)}{sinx\left(sinx+cosx\right)}=cotx\)
\(F=\frac{sinx+sin4x+sin7x}{cosx+cos4x+cos7x}\)
\(F=\frac{2sin4xcos3x+sin4x}{2cos4xcos3x+cos4x}\)
\(F=\frac{2sin4x\left(cos3x+1\right)}{2cos4x\left(cos3x+1\right)}=tan4x\)
\(G=\frac{cos2x-sin4x-cos6x}{cos2x+sin4x-cos6x}=\frac{-2sin4xsin2x-sin4x}{-2sin4xsin2x+sin4x}\)
\(G=\frac{-sin4x\left(2sin2x+1\right)}{-sin4x\left(2sin2x-1\right)}=\frac{2sin2x+1}{2sin2x-1}\)
Giải pt
\(sinx-\sqrt{2}cos3x=\sqrt{3}cosx+\sqrt{2}sin3x\)
\(sinx-\sqrt{3}cosx=2sin5x\)
\(\sqrt{3}cos5x-2sin3xcos2x-sinx=0\)
\(sinx+cosxsin2x+\sqrt{3}cos3x=2\left(cos4x-sin^3x\right)\)
\(tanx-3cotx=4\left(sinx+\sqrt{3}cosx\right)\)
1.
\(sinx-\sqrt{2}cos3x=\sqrt{3}cosx+\sqrt{2}sin3x\)
\(\Leftrightarrow sinx-\sqrt{3}cosx=\sqrt{2}cos3x+\sqrt{2}sin3x\)
\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{\sqrt{2}}cos3x+\dfrac{1}{\sqrt{2}}sin3x\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=sin\left(3x+\dfrac{\pi}{4}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=3x+\dfrac{\pi}{4}+k2\pi\\x-\dfrac{\pi}{3}=\pi-3x-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7\pi}{24}-k\pi\\x=-\dfrac{3}{4}x+\dfrac{13\pi}{48}+\dfrac{k\pi}{2}\end{matrix}\right.\)
Vậy phương trình đã cho có nghiệm \(x=-\dfrac{7\pi}{24}-k\pi;x=-\dfrac{3}{4}x+\dfrac{13\pi}{48}+\dfrac{k\pi}{2}\)
2.
\(sinx-\sqrt{3}cosx=2sin5\text{}x\)
\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=sin5x\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=sin5x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=5x+k2\pi\\x-\dfrac{\pi}{3}=\pi-5x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{12}-\dfrac{k\pi}{2}\\x=\dfrac{2\pi}{9}+\dfrac{k\pi}{3}\end{matrix}\right.\)
Vậy phương trình đã cho có nghiệm \(x=-\dfrac{\pi}{12}-\dfrac{k\pi}{2};x=\dfrac{2\pi}{9}+\dfrac{k\pi}{3}\)