ta có số A = dcba .
Chứng tỏ rằng : nếu {a + 2b] chia hết cho 4 thì A chia hết cho 4.
Cho N = dcba chứng tỏ rằng
nếu (a+2b) chia hết cho 4 thì N chia hết cho 4
Cho A = dcba
Chứng minh rằng nếu (a + 2b) chia hết cho 4 thì A chia hết cho 4.
Cho số tự nhiên A= dcba. CTR:
a, Nếu (a+2b) chia hết cho 4 thì A chia hết cho 4 và ngược lại
b, Nếu (a+2b+4c) chia hết cho 8 thì A chia hết cho 8 và ngược lại
Cho N = dcba (gạch trên đầu dcba) , chứng minh rằng:
a/ N chia hết cho 4 <=> a+2b chia hết cho 4
b/ N chia hết cho 8 <=> a+2b+4c chia hết cho 8
c/ N chia hết cho 16 <=> a+2b+4c+8d chia hết cho 16 (b chẵn)
Bạn vào Wed:http://olm.vn/hoi-dap/question/374984.html
1.Cho số tự nhiên A=dcba.CMR:
a>Nếu (a+2b) chia hết cho 4 thì A chia hết cho 4,ngược lại.
b>Nếu (a+2b+4c) chia hết cho 8 thì A chia hết cho 8,ngược lại.
Ai giải nhanh nhất mình tick,nhớ giải ra với nhé!
cho số tự nhiên A = dcba. Chứng minh rằng :
a)A chia hết cho 4 <=>a+2bc chia hết cho 4
b)A chia hết cho 8<=> a+2b+4c chia hết cho 8
chứng minh rằng dcba chia hết cho 4 khi và chỉ khi a + 2b chia hết cho 4
rút ra nhận xét
dcba = 1000d + 100c + 10b + a = (1000d + 100c + 8b) + (a + 2b)
Ta có 1000d + 100c + 8b chia hết cho 4 => a+2b chia hết cho 4 => dcba chia hết cho 4
Bài 1 : Tìm các chữ số x,y biết
a. 34x5y chia hết cho 4 và 9
bài 2 cho N=dcba chứng minh rằng
a.N chia hết cho 4 <=>(a+2b) chia hết cho 4
bài 3 chứng minh rằng số 1111...11111(81 số 1) chia hết cho 81
bài 4 tìm các số a56b chia hết cho 45
Bà1
*) 34x5y chia hết cho 4 khi 5y chia hết cho 4
khi đó y = 2 hoặc y = 6.
*) 34x5y chia hết cho 9 khi 3+4+x+5+y = 12+x+y chia hết cho 9
Với y=2 ta có 12+x+2=14+x chia hết cho 9 khi x = 4
ta có số 34452 chia hết cho 36.
Với y=6 ta có 12+x+6=18+x chia hết cho 9 khi x = 9
ta có số 34956 chia hết cho 36.
Kết luận: có hai số chia hết cho 36 là 34452 và 34956.
cho n =dcba
chứng minh rằng
a, n chia hết cho 4 <=> a+2b chia het cho 4
b, n chia hết cho 8 <=> a+2b+4c chia hết cho 48
n chia hết cho 16 <=> a+2b+ 4c +8d chia hết cho 16 và b là số chẵn
b, dcba = 1000d +100c +10b +a=(1000d+96c+8b)+(a+2b+4c)
mà 100d +96c +8b chia hết cho 8
suy ra a+2b+4c chia hết cho 8(đpcm)
Ta có : \(n=\overline{dcba}=1000d+100c+10b+a\)
\(=\left(1000d+100c+8b\right)+\left(2b+a\right)\)
\(=4\left(250d+25c+2b\right)+\left(2b+a\right)\)
Vì n chia hết cho 4 và 4(250d+25c+2b) chia hết cho 4 nên a+2b chia hết cho 4.
câu b) tương tự, ta có :\(n=8\left(125d+12c+b\right)+\left(a+2b+4c\right)\)
mà n chia hết cho 8 ; 8(125d+12c+b) chia hết cho 8 => a+2b+4c chia hết cho 8.
câu c) : \(n=16\left(62d+6c+\frac{b}{2}\right)+\left(a+2b+4c+8d\right)\)
vì b chẵn => 16(62d+6c+b/2) chia hết cho 16 mà n chia hết cho 16; => a+2b+4c+8d chia hết cho 16.