Cho N = dcba chứng tỏ rằng
nếu (a+2b) chia hết cho 4 thì N chia hết cho 4
Cho A = dcba
Chứng minh rằng nếu (a + 2b) chia hết cho 4 thì A chia hết cho 4.
Cho số tự nhiên A= dcba. CTR:
a, Nếu (a+2b) chia hết cho 4 thì A chia hết cho 4 và ngược lại
b, Nếu (a+2b+4c) chia hết cho 8 thì A chia hết cho 8 và ngược lại
Cho N = dcba (gạch trên đầu dcba) , chứng minh rằng:
a/ N chia hết cho 4 <=> a+2b chia hết cho 4
b/ N chia hết cho 8 <=> a+2b+4c chia hết cho 8
c/ N chia hết cho 16 <=> a+2b+4c+8d chia hết cho 16 (b chẵn)
1.Cho số tự nhiên A=dcba.CMR:
a>Nếu (a+2b) chia hết cho 4 thì A chia hết cho 4,ngược lại.
b>Nếu (a+2b+4c) chia hết cho 8 thì A chia hết cho 8,ngược lại.
Ai giải nhanh nhất mình tick,nhớ giải ra với nhé!
cho số tự nhiên A = dcba. Chứng minh rằng :
a)A chia hết cho 4 <=>a+2bc chia hết cho 4
b)A chia hết cho 8<=> a+2b+4c chia hết cho 8
chứng minh rằng dcba chia hết cho 4 khi và chỉ khi a + 2b chia hết cho 4
rút ra nhận xét
cho n =dcba
chứng minh rằng
a, n chia hết cho 4 <=> a+2b chia het cho 4
b, n chia hết cho 8 <=> a+2b+4c chia hết cho 48
n chia hết cho 16 <=> a+2b+ 4c +8d chia hết cho 16 và b là số chẵn
cho A = dcba ( a thuộc N )
a) chứng minh A chia hết cho 4 khi và chỉ khi ( 2b + a ) chia hết cho 4
b) chứng minh a chia hết cho 8 khi và chỉ khi ( a+ 2b +4c ) chia hết cho 8