\(\frac{a}{3}=\frac{b}{5}=\frac{c}{8}vàa^2+b^2+c^2=-120\)Tim a, b, c
\(\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{4}vàa-b+c=-49\)
\(\Rightarrow\)\(\frac{a}{10}=\frac{b}{15};\frac{b}{15}=\)\(\frac{c}{12}\)
\(\Leftrightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
\(\Rightarrow\frac{a-b+c}{10-15+12}\frac{-49}{-7}=-7\)
\(\Rightarrow a=10.-7=-70\)
\(b=15.-7=-105\)
\(c=12.-7=-84\)
ta có \(\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{10}=\frac{b}{15};\frac{b}{5}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{12}\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{-49}{7}=-7\)
\(\frac{a}{10}=-7\Rightarrow a=-7.10=-71\)
\(\frac{b}{15}=-7\Rightarrow b=-7.15=-105\)
\(\frac{c}{12}=-7\Rightarrow c=-7.12=-84\)
\(\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{4}\Rightarrow\frac{a}{2}=\frac{5b}{15};\frac{3b}{15}=\frac{c}{4}\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=-\frac{49}{7}=-7\)
Suy ra : \(\frac{a}{10}=-7\Rightarrow a=-7.10=-70\)
\(\frac{b}{15}=-7\Rightarrow b=-7.15=-105\)
\(\frac{c}{12}=-7\Rightarrow c=-7.12=-84\)
Tìm a,b,c
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{7}vàa^2-b^2+2.c^2=180\)
Các bn giupd mk nha ^_^
\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}vàa+b+c=-50\)
Tìm a,b,c
Có cặp c,y nguyên (a,b) thỏa mãn
\(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{2+3}vàa+b=2000\)
giúp mình tìm ba số a;b;c biết \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}vàa+b+c=-50\) giúp mình đi nhé :B hehe <3
5(3a-2b)/25=3(2c-5a)/9=2(5b-3c)/4
15a-10b/25=6c-15a/9=10b-6c/4
theo tc dãy tỉ số bằng nhau ta có:
15a-10b/25=6c-15a/9=10b-6c/4
15a-10b+6c-15a+10b-6c/25+9+4
=0/4
=> 3a-2b/5=2c-5a/3=5b-3c/2=0
=> 3a-2b=5.0=0 => 3a=2b thì a/2=b/3
=> 2c-5a=3.0=0 => 2c=5a thì c/5=a/2
rồi bạn tự giải đi: a/2=b/3=c/5 áp dụng tc dãy tỉ số bằng nhau
bạn quy đồng mấu rồi dùng máy tính giải hệ là ra ngay ý mà
Tìm a,b,c biết \(\frac{a}{3}=\frac{b-3}{4}=\frac{c+5}{11}vàa+b+c=34\)
Tim a , b , c neu :
a ) 5a - 3b - 3c = - 536 va \(\frac{a}{4}=\frac{b}{6};\frac{b}{5}=\frac{c}{8}\)
b ) a2 + 3b2 - 2c2 = -16 va \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
a) \(\frac{a}{4}=\frac{b}{6}\Rightarrow\frac{a}{20}=\frac{b}{30}\)
\(\frac{b}{5}=\frac{c}{8}\Rightarrow\frac{b}{30}=\frac{c}{48}\)
=> \(\frac{a}{20}=\frac{b}{30}=\frac{c}{48}\)
Áp dubgj tc của dãy tỉ số bằng nahu at có:
\(\frac{a}{20}=\frac{b}{30}=\frac{c}{48}=\frac{5a-3b-3c}{20\cdot5-30\cdot3-48\cdot3}=\frac{-536}{-134}=4\)
=> \(\begin{cases}a=80\\b=120\\c=192\end{cases}\)
b)Có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
=> \(\frac{a^2}{4}=\frac{b^2}{9}=\frac{c^2}{16}\)
Áp dụng tc của dãy tie số bằng nhau ta có:
\(\frac{a^2}{4}=\frac{b^2}{9}=\frac{c^2}{16}=\frac{a^2+3b^2-2c^2}{4+3\cdot9-2\cdot16}=\frac{-16}{-1}=16\)
=> \(\begin{cases}a=8;s=-8\\b=12;b=-12\\c=16;x=-16\end{cases}\)
Vậy (x;y;z) thỏa mãn là \(\left(8;12;16\right);\left(-8;-12;-16\right)\)
\(\frac{2c-5a}{3}=\frac{5b-3c}{3}\Rightarrow2c-5a=5b-3c\Rightarrow a+b=c\)
Mà \(a+b+c=-50\Rightarrow2c=-50\Rightarrow c=-25\); \(a+b=-25\)
\(\frac{3a-2b}{5}=\frac{2c-5a}{3}\Rightarrow9a-6b=-250-25a\Rightarrow34a-6b=-250\)
\(\Rightarrow40a-6\left(a+b\right)=-250\Rightarrow40a=-250+6.\left(-25\right)=-400\)
\(a=-10\); => \(b=-25-a=-25+10=-15\)
Vậy a= -10 ; b = -15 ; c= -25
áp dụng cô si ta có:
+)\(\frac{a^5}{b^3}+\frac{a^3}{b}\ge\frac{2a^4}{b^2};\frac{b^5}{c^3}+\frac{b^3}{c}\ge\frac{2b^4}{c^2};\frac{c^5}{a^3}+\frac{c^3}{a}\ge\frac{2c^4}{a^2}\)
\(\Leftrightarrow\frac{a^5}{b^3}+\frac{b^5}{c^3}+\frac{c^5}{a^3}\ge2\left(\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\right)-\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)\)
+)\(\frac{a^4}{b^2}+a^2\ge\frac{2a^3}{b};\frac{b^4}{c^2}+b^2\ge\frac{2b^3}{c};\frac{c^4}{a^2}+c^2\ge\frac{2C^3}{a}\)
\(\Leftrightarrow\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\ge2\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)-\left(a^2+b^2+c^2\right)\)
+)\(\frac{a^3}{b}+ab\ge2a^2;\frac{b^3}{c}+bc\ge2b^2;\frac{c^3}{a}+ca\ge2c^2\)
\(\Leftrightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge\left(a^2+b^2+c^2\right)+\left(a^2+b^2+c^2-ab-bc-ca\right)\ge\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\ge\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)+\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}-a^2-b^2-c^2\right)\ge\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\)
\(\Leftrightarrow\frac{a^5}{b^3}+\frac{b^5}{c^3}+\frac{c^5}{a^3}\ge\left(\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\right)+\left(\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}-\frac{a^3}{b}-\frac{b^3}{c}-\frac{c^3}{a}\right)\ge\left(\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\right)\)