a) \(\frac{a}{4}=\frac{b}{6}\Rightarrow\frac{a}{20}=\frac{b}{30}\)
\(\frac{b}{5}=\frac{c}{8}\Rightarrow\frac{b}{30}=\frac{c}{48}\)
=> \(\frac{a}{20}=\frac{b}{30}=\frac{c}{48}\)
Áp dubgj tc của dãy tỉ số bằng nahu at có:
\(\frac{a}{20}=\frac{b}{30}=\frac{c}{48}=\frac{5a-3b-3c}{20\cdot5-30\cdot3-48\cdot3}=\frac{-536}{-134}=4\)
=> \(\begin{cases}a=80\\b=120\\c=192\end{cases}\)
b)Có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
=> \(\frac{a^2}{4}=\frac{b^2}{9}=\frac{c^2}{16}\)
Áp dụng tc của dãy tie số bằng nhau ta có:
\(\frac{a^2}{4}=\frac{b^2}{9}=\frac{c^2}{16}=\frac{a^2+3b^2-2c^2}{4+3\cdot9-2\cdot16}=\frac{-16}{-1}=16\)
=> \(\begin{cases}a=8;s=-8\\b=12;b=-12\\c=16;x=-16\end{cases}\)
Vậy (x;y;z) thỏa mãn là \(\left(8;12;16\right);\left(-8;-12;-16\right)\)