Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Minh Quân
Xem chi tiết
Phan Duy Tăng
Xem chi tiết
Thành Nguyễn
Xem chi tiết
Đỗ Viết Ngọc Cường
23 tháng 7 2018 lúc 20:39

ko

Nguyễn Xuân Tiến 24
23 tháng 7 2018 lúc 21:26

Có, chẳng hạn \(\sqrt{\dfrac{1}{2}}+\sqrt{\dfrac{1}{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\) (với \(a=b=\dfrac{1}{2}\in Q\))

Hung nguyen
24 tháng 7 2018 lúc 8:24

Với mọi a, b thỏa mãn

\(\left\{{}\begin{matrix}a=\sqrt{2n^2}\\b=\sqrt{2\left(1-n\right)^2}\end{matrix}\right.\)\(\left(0< n< 1,n\in Q\right)\)

Trường Ngô
Xem chi tiết
Thắng Nguyễn
13 tháng 6 2017 lúc 21:51

$\left ( a+b\sqrt{2} \right )^{1994}+\left ( c+d\sqrt{2} \right )^{1994}= 5+4\sqrt{2}$ - Đại số - Diễn đàn Toán học

Trường Ngô
Xem chi tiết
Thắng Nguyễn
13 tháng 6 2017 lúc 8:43

ad nhị thưj newton khai triển 2 cái kia ra =="

Dung Đặng Phương
Xem chi tiết
Ngân Trần BTS
Xem chi tiết
Akai Haruma
19 tháng 7 2018 lúc 18:13

Lời giải:

Ta có:
\(A+B=a\sqrt{a}+\sqrt{ab}+b\sqrt{b}+\sqrt{ab}\)

\(=(\sqrt{a})^3+(\sqrt{b})^3+2\sqrt{ab}\)

\(=(\sqrt{a}+\sqrt{b})(a-\sqrt{ab}+b)+2\sqrt{ab}\)

\(=(\sqrt{a}+\sqrt{b})[(\sqrt{a}+\sqrt{b})^2-3\sqrt{ab}]+2\sqrt{ab}\)

Ta thấy \(\sqrt{a}+\sqrt{b}\in\mathbb{Q}; \sqrt{ab}\in\mathbb{Q}\) nên:

\((\sqrt{a}+\sqrt{b})[(\sqrt{a}+\sqrt{b})^2-3\sqrt{ab}]\in\mathbb{Q}\)\(2\sqrt{ab}\in\mathbb{Q}\)

Do đó: \(A+B\in\mathbb{Q}\)

Mặt khác:

\(AB=\sqrt{a}(a+\sqrt{b}).\sqrt{b}(b+\sqrt{a})\)

\(=\sqrt{ab}(a+\sqrt{b})(b+\sqrt{a})\)

\(=\sqrt{ab}(ab+a\sqrt{a}+b\sqrt{b}+\sqrt{ab})\)

\(=\sqrt{ab}(A+B)\)

Do $A+B$ là số hữu tỉ (cmt) và $\sqrt{ab}$ cũng là số hữu tỉ, nên \(AB\) là số hữu tỉ.

Hung nguyen
20 tháng 7 2018 lúc 10:00

Bác Akai Haruma làm nhầm đoạn cuối. Chắc do học nhiều nên mệt. Mình đại diện các bạn khác tiếp sức cho bác.

\(AB=\sqrt{ab}\left(a+\sqrt{b}\right)\left(b+\sqrt{a}\right)\)

\(=\sqrt{ab}\left(ab+a\sqrt{a}+b\sqrt{b}+\sqrt{ab}\right)\)

\(=\sqrt{ab}\left(ab-\sqrt{ab}+a\sqrt{a}+\sqrt{ab}+b\sqrt{b}+\sqrt{ab}\right)\)

\(=\sqrt{ab}\left(ab-\sqrt{ab}+A+B\right)\)

\(\left\{{}\begin{matrix}A+B\in Q\\\sqrt{ab}\in Q\\ab\in Q\end{matrix}\right.\)

\(\Rightarrow AB\in Q\)

Ngân Trần BTS
19 tháng 7 2018 lúc 17:39

Mình sửa lại đề chút nhé :

CMR : nếu \(\sqrt{a}+\sqrt{b}\)\(\sqrt{ab}\) đều là các số hữu tỉ thì A + B và A.B cũng là các số hữu tỉ.

Akai Haruma Lightning Farron......

Đạt Trần Tiến
Xem chi tiết
Akai Haruma
25 tháng 4 2018 lúc 12:36

Lời giải:

Ta có:

\(M=\sqrt{a^2+abc}+\sqrt{b^2+abc}+\sqrt{c^2+abc}+9\sqrt{abc}\)

\(M=\sqrt{a(a+bc)}+\sqrt{b(b+ac)}+\sqrt{c(c+ab)}+9\sqrt{abc}\)

Áp dụng BĐT Bunhiacopxky:

\([\sqrt{a(a+bc)}+\sqrt{b(b+ac)}+\sqrt{c(c+ab)}]^2\leq (a+b+c)(a+bc+b+ac+c+ab)\)

\(\Leftrightarrow \sqrt{a(a+bc)}+\sqrt{b(b+ac)}+\sqrt{c(c+ab)}\leq \sqrt{1+ab+bc+ac}\)

Theo hệ quả của BĐT AM-GM: \(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=\frac{1}{3}\)

\(\Rightarrow \sqrt{a(a+bc)}+\sqrt{b(b+ac)}+\sqrt{c(c+ab)}\leq \frac{2\sqrt{3}}{3}(1)\)

AM-GM: \(a+b+c\geq 3\sqrt[3]{abc}\Rightarrow abc\leq \frac{1}{27}\Rightarrow 9\sqrt{abc}\leq \sqrt{3}(2)\)

Từ (1);(2) suy ra: \(M\leq \frac{2\sqrt{3}}{3}+\sqrt{3}=\frac{5\sqrt{3}}{3}\)

Vậy \(M_{\max}=\frac{5\sqrt{3}}{3}\) . Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)

luu thanh huyen
Xem chi tiết