\(\dfrac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
mọi người ơi giúp mình với
Mọi người ơi giúp mình với. Mình đang cần gấp
\(\sqrt{5}+3\sqrt{3}+\sqrt{6-3\sqrt{3}}\) =?
A.\(4\sqrt{2}\) B.\(\sqrt{2}\) C.3\(\sqrt{2}\) D.2\(\sqrt{2}\)
\(\text{Theo đề bài: }=\dfrac{3\sqrt{2}+6\sqrt{3}+2\sqrt{5}-\sqrt{6}}{2}\)
B=\(\dfrac{1}{2+2\sqrt{b}}+\dfrac{1}{2-2\sqrt{b}}-\dfrac{b^2+1}{1-b^2}\)
a. tìm điều kiện xác định và rút gọn
b. tìm giá trị của b để biểu thức B >\(\dfrac{1}{3}\)
mọi người ơi giúp mình với nhanh lên ạ !!!!!!!!!!!!!!!!!!!!!!!
a: ĐKXĐ: b>=0; b<>1
\(B=\dfrac{1-\sqrt{b}+1+\sqrt{b}}{2\left(1-b\right)}-\dfrac{b^2+1}{1-b^2}\)
\(=\dfrac{1}{1-b}+\dfrac{b^2+1}{b^2-1}\)
\(=\dfrac{-b-1+b^2+1}{b^2-1}=\dfrac{b\left(b-1\right)}{\left(b-1\right)\left(b+1\right)}=\dfrac{b}{b+1}\)
b: B>1/3
=>B-1/3>0
=>b/b+1-1/3>0
=>(3b-b-1)/(3b+3)>0
=>2b-1>0
=>b>1/2
Mọi người ơi, giúp mình nhanh bài này với ạ, mình đang cần gấp ạ. Cảm ơn mng nhiều!!
\(\left(\dfrac{1}{\sqrt{a}-2}+\dfrac{1}{\sqrt{a}+2}\right):\left(1-\dfrac{2}{\sqrt{a}+2}\right)\)
\(=\dfrac{\sqrt{a}+2+\sqrt{a}-2}{a-4}:\dfrac{\sqrt{a}+2-2}{\sqrt{a}+2}\)
\(=\dfrac{2\sqrt{a}}{a-4}\cdot\dfrac{\sqrt{a}+2}{\sqrt{a}}=\dfrac{2}{\sqrt{a}-2}\)
\(\dfrac{a-b}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{a^3}+\sqrt{\text{b}^3}}{a-b}\)
giúp mình với
rút gọn à bạn?
\(\dfrac{a-b}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{a^3}+\sqrt{b^3}}{a-b}\)
\(=\dfrac{\left(a-b\right)\left(\sqrt{a}+\sqrt{b}\right)-\sqrt{a^3}-\sqrt[]{b^3}}{\left(\sqrt{x}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{a\sqrt{a}-b\sqrt{a}+a\sqrt{b}-b\sqrt{b}-a\sqrt{a}-b\sqrt[]{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{-b\sqrt{a}+\left(a-2b\right)\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
Mọi người ơi, giúp em giải bài này chi tiết với ạ, em cảm ơn nhiều.
\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{2}{x-\sqrt{x}}\right):\dfrac{1}{\sqrt{x}-1}\)
Cho P= \(\dfrac{x+2}{x\sqrt{x}+1}\)+\(\dfrac{\sqrt{x}-1}{x-\sqrt{x}+1}\)- \(\dfrac{\sqrt{x}-1}{x-1}\)
a, Rút gọn
b, Tìm Min P
c, Cmr với những giá trị của x để P xác định thì P< 1
Mn ơi giúp mình với, giúp từ phần b á. Phần a mình ra kq là \(\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)rồi ạ.
Cảm ơn nhiều nhiều mấy bạn nào giúp đc nha
a) tính giá trị P = -\(\dfrac{5\sqrt{160}}{\sqrt{90}}\)
b) rút gọn biểu thức Q= \(\dfrac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}+2\sqrt{b}\) với a >0, b>0 và a# b
giải nhanh giúp mình với mình đang cần gấp
a: \(P=-5\sqrt{\dfrac{160}{90}}=-5\cdot\dfrac{4}{3}=-\dfrac{20}{3}\)
b: \(Q=\sqrt{a}-\sqrt{b}+2\sqrt{b}=\sqrt{a}+\sqrt{b}\)
mong mọi người giúp mình câu này
cho a,b,c >0 có \(\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}=1\) tìm giá trị lớn nhất của \(\dfrac{a}{\sqrt{bc\left(a^2+1\right)}}+\dfrac{b}{\sqrt{ca\left(b^2+1\right)}}+\dfrac{c}{\sqrt{ab\left(c^2+1\right)}}\)
Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)
\(P=\sqrt{\dfrac{yz}{x^2+1}}+\sqrt{\dfrac{zx}{y^2+1}}+\sqrt{\dfrac{xy}{z^2+1}}\)
\(P=\sqrt{\dfrac{yz}{x^2+xy+yz+zx}}+\sqrt{\dfrac{zx}{y^2+xy+yz+zx}}+\sqrt{\dfrac{xy}{z^2+xy+yz+zx}}\)
\(P=\sqrt{\dfrac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\dfrac{zx}{\left(y+z\right)\left(x+y\right)}}+\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\)
\(P\le\dfrac{1}{2}\left(\dfrac{y}{x+y}+\dfrac{z}{x+z}\right)+\dfrac{1}{2}\left(\dfrac{z}{y+z}+\dfrac{x}{x+y}\right)+\dfrac{1}{2}\left(\dfrac{x}{x+z}+\dfrac{y}{y+z}\right)=\dfrac{3}{2}\)
\(P_{max}=\dfrac{3}{2}\) khi \(x=y=z=\dfrac{1}{\sqrt{3}}\) hay \(a=b=c=\sqrt{3}\)
(\(\dfrac{\sqrt{a}}{\sqrt{a}-1}\)-\(\dfrac{2\sqrt{a}}{a-\sqrt{a}}\)):\(\dfrac{\sqrt{a}+1}{a-1}\) mọi người giúp em với ạ
ĐKXĐ: \(a>0;a\ne1\)
\(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{a-\sqrt{a}}\right):\dfrac{\sqrt{a}+1}{a-1}\)
\(=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right).\dfrac{a-1}{\sqrt{a}+1}\)
\(=\left[\dfrac{\sqrt{a}.\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{2\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right].\dfrac{a-1}{\sqrt{a}+1}\)
\(=\left[\dfrac{\sqrt{a}\left(\sqrt{a}-2\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}\right].\dfrac{a-1}{\sqrt{a}+1}\)
\(=\dfrac{\sqrt{a}-2}{\sqrt{a}-1}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\)
\(=\sqrt{a}-2\)