Tìm các cặp số a,b thỏa mãn
\(\dfrac{3b}{a^2-4}=\dfrac{1-125a-3b}{6a+13}=1-125a\)
Tìm các cặp số a, b thỏa mãn :
\(\frac{3b}{a^2-4}=\frac{1-125a-3b}{6a+13}=1-125a\)
ĐK : \(a\ne\pm2;a\ne\frac{-13}{6}\)
Ta có :
\(\frac{3b}{a^2-4}=\frac{1-125a-3b}{6x+13}=1-125a\)
\(\frac{3b}{a^2-4}=\frac{1-125a-3b}{6a+13}=\frac{1-125a}{1}=\frac{1-125a}{a^2+6a+9}\)
\(\Rightarrow a^2+6a+8=0\) ( \(\left(a\ne\frac{1}{125}\right)\)
Nếu \(a=-2\) ( loại)
\(a=-4\) ( t/mãn)
Vậy \(a=-4\)là giá trị a cần tìm
Thay vào biểu thức tìm b .Bạn tự làm nhé !!
Tìm các cặp số a; b thỏa mãn:
\(\dfrac{3b}{a^2-4}=\dfrac{1-125a-3b}{6a+13}=1-125a\)
HELP ME, PLEASE !!!!!!!!!!!!!!!!!!!!
Tìm các cặp số a; b thỏa mãn:
\(\frac{3b}{a^2-4}=\frac{1-125a-3b}{6a+13}=1-125a\)
HELP ME, PLEASE !!!!!!!!!!!!!!!!!!!!
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
Với a,b,c là các số thực dương thỏa mãn đẳng thức \(6a+3b+2c=abc\)
➢Tìm giá trị lớn nhất của \(Q=\dfrac{1}{\sqrt{a^2+1}}+\dfrac{2}{\sqrt{b^2+4}}+\dfrac{3}{\sqrt{c^2+9}}\)
\(6a+3b+2c=abc\Leftrightarrow\dfrac{2}{ab}+\dfrac{3}{ac}+\dfrac{6}{bc}=1\)
Đặt \(\left(\dfrac{1}{a};\dfrac{2}{b};\dfrac{3}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)
\(Q=\dfrac{1}{\sqrt{\dfrac{1}{x^2}+1}}+\dfrac{2}{\sqrt{\dfrac{4}{y^2}+4}}+\dfrac{3}{\sqrt{\dfrac{9}{z^2}+9}}=\dfrac{x}{\sqrt{x^2+1}}+\dfrac{y}{\sqrt{y^2+1}}+\dfrac{z}{\sqrt{z^2+1}}\)
\(Q=\dfrac{x}{\sqrt{x^2+xy+yz+zx}}+\dfrac{y}{\sqrt{y^2+xy+yz+zx}}+\dfrac{z}{\sqrt{z^2+xy+yz+zx}}\)
\(Q=\dfrac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{y}{\sqrt{\left(x+y\right)\left(y+z\right)}}+\dfrac{z}{\sqrt{\left(x+z\right)\left(y+z\right)}}\)
\(Q\le\dfrac{1}{2}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}+\dfrac{y}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{x+z}+\dfrac{z}{y+z}\right)=\dfrac{3}{2}\)
\(Q_{max}=\dfrac{3}{2}\) khi \(x=y=z=\dfrac{1}{\sqrt{3}}\) hay \(\left(a;b;c\right)=\left(\sqrt{3};2\sqrt{3};3\sqrt{3}\right)\)
1/Tìm MIN A biết \(A=x^2-2xy+6y^2-12x+2y+100\)
2/Cho a,b,c là độ dải của ba cạnh tam giác CMR
\(\left(a^2+c^2-a^2\right)^2-4b^2c^2
Tìm các số a,b biết \(\dfrac{2a+3b-1}{6a}=\dfrac{1+2a}{5}=\dfrac{3b-2}{7}\)
cho a,b,c là các số thực dương thỏa mãn \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}=2017\)
Tìm max \(P=\dfrac{1}{2a+3b+3c}+\dfrac{1}{3a+2b+3c}+\dfrac{1}{3a+3b+2c}\)
cho a,b,c là các số dương thay đổi thỏa mãn:
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=2017\)
Tìm GTLN của P biết : \(P=\dfrac{1}{2a+3b+3c}+\dfrac{1}{3a+2b+3c}+\dfrac{1}{3a+3b+2c}\)
\(\dfrac{1}{a+b}+\dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{1}{b+c}\ge\dfrac{16}{2a+3b+3c}\)
\(\dfrac{1}{b+c}+\dfrac{1}{a+b}+\dfrac{1}{a+c}+\dfrac{1}{a+c}\ge\dfrac{16}{2b+3a+3c}\)
\(\dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{1}{a+b}+\dfrac{1}{a+b}\ge\dfrac{16}{2c+3a+3b}\)
cộng tất cả lại ta được \(4.2017\ge16.\left(\dfrac{1}{2a+3b+3c}+\dfrac{1}{2b+3a+3c}+\dfrac{1}{2c+3a+3b}\right)< =>P\le\dfrac{2017}{4}\)
dấu bằng xảy ra khi \(\left\{{}\begin{matrix}\dfrac{1}{a+b}=\dfrac{1}{b+c}=\dfrac{1}{a+c}\\\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}=2017\end{matrix}\right.< =>\left\{{}\begin{matrix}a=b=c\\\dfrac{3}{2a}=\dfrac{3}{2b}=\dfrac{3}{2c}=2017\end{matrix}\right.< =>a=b=c=\dfrac{3}{4034}}\)
Cho các số thực dương a,b thỏa mãn: (a+1)(b+1)=4ab. Tìm GTLN của
P=\(\dfrac{1}{\sqrt{3a^2+1}}+\dfrac{1}{\sqrt{3b^2+1}}\)
\(\left(a+1\right)\left(b+1\right)=4ab\Leftrightarrow\left(\dfrac{1}{a}+1\right)\left(\dfrac{1}{b}+1\right)=4\)
Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b}\right)=\left(x;y\right)\Rightarrow\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-x-y\)
\(P=\dfrac{x}{\sqrt{x^2+3}}+\dfrac{y}{\sqrt{y^2+3}}\le\dfrac{x}{\sqrt{\dfrac{\left(x+3\right)^2}{4}}}+\dfrac{y}{\sqrt{\dfrac{\left(y+3\right)^2}{4}}}=\dfrac{2x}{x+3}+\dfrac{2y}{y+3}\)
\(P\le\dfrac{4xy+6x+6y}{\left(x+3\right)\left(y+3\right)}=\dfrac{4xy+6x+6y}{xy+3x+3y+9}=\dfrac{4\left(3-x-y\right)+6x+6y}{3-x-y+3x+3y+9}=\dfrac{2x+2y+12}{2x+2y+12}=1\)
\(P_{max}=1\) khi \(x=y=1\) hay \(a=b=1\)