S=\(\dfrac{1}{a^2+a}\)\(+\dfrac{1}{a^2+3a+2}\)\(+\dfrac{1}{a^2+5a+6}\)\(+\dfrac{1}{a+3}\)
a) Chứng minh rằng: \(\dfrac{1}{6}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}\)
b) Tìm số nguyên a để: \(\dfrac{2a+9}{a+3}+\dfrac{5a+17}{a+3}-\dfrac{3a}{a+3}\) là số nguyên.
rust gọn các biểu thức sau
a) A= \(\dfrac{1}{a-b}+\dfrac{1}{a+b}+\dfrac{2a}{a^2+b^2}+\dfrac{4a^3}{a^4+b^4}+\dfrac{8a^7}{a^8+b^8}\)
b ) B= \(\dfrac{1}{a^2+a}+\dfrac{1}{a^2+3a+2}+\dfrac{1}{a^2+5a+6}+\dfrac{1}{a^2+7a+9}+\dfrac{1}{a^2+9a+20}\)
Đây là câu a/
https://hoc24.vn/hoi-dap/question/693692.html?pos=1903228
Còn câu b thì như sau:
Trước hết, nghi ngờ bạn ghi sai đề ở con này \(\dfrac{1}{a^2+7a+9}\) , số 9 phải là số 12 mới hợp lý. Mình tự sửa lại đề, còn nếu đề đúng như bạn chép thì bạn giữ nguyên nó, phần còn lại rút gọn được còn đâu thì quy đồng giải trâu thôi, chẳng cách nào với đề xấu kiểu ấy cả.
\(B=\dfrac{1}{a\left(a+1\right)}+\dfrac{1}{\left(a+1\right)\left(a+2\right)}+\dfrac{1}{\left(a+2\right)\left(a+3\right)}+\dfrac{1}{\left(a+3\right)\left(a+4\right)}+\dfrac{1}{\left(a+4\right)\left(a+5\right)}\)
\(B=\dfrac{1}{a}-\dfrac{1}{a+1}+\dfrac{1}{a+1}-\dfrac{1}{a+2}+\dfrac{1}{a+2}-\dfrac{1}{a+3}+\dfrac{1}{a+3}-\dfrac{1}{a+4}+\dfrac{1}{a+4}-\dfrac{1}{a+5}\)
\(B=\dfrac{1}{a}-\dfrac{1}{a+5}=\dfrac{5}{a\left(a+5\right)}\)
1. Cho \(a,b,c>0\) và \(ab+bc+ca=abc\). Chứng minh rằng:
\(\dfrac{1}{a+3b+2c}+\dfrac{1}{b+3c+2a}+\dfrac{1}{c+3a+2b}\le\dfrac{1}{6}\)
2. Cho \(a,b\ge0\) và \(a+b=2\) Tìm Max
\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+20ab\)
Có \(ab+bc+ac=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Áp dụng các bđt sau:Với x;y;z>0 có: \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) và \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
Có \(\dfrac{1}{a+3b+2c}=\dfrac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\le\dfrac{1}{9}\left(\dfrac{1}{a+b}+\dfrac{2}{b+c}\right)\)\(\le\dfrac{1}{9}.\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{2}{c}\right)=\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{3}{b}+\dfrac{2}{c}\right)\)
CMTT: \(\dfrac{1}{b+3c+2a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{3}{c}+\dfrac{2}{a}\right)\)
\(\dfrac{1}{c+3a+2b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{3}{a}+\dfrac{2}{b}\right)\)
Cộng vế với vế => \(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{36}.6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)
Dấu = xảy ra khi a=b=c=3
Có \(a+b=2\Leftrightarrow2\ge2\sqrt{ab}\Leftrightarrow ab\le1\)
\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+2ab\)
\(=9a^2b^2+6\left(a^3+b^3\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+48-18ab.2+4ab+5.2.ab+20ab\)
\(=9a^2b^2-2ab+48\)
Đặt \(f\left(ab\right)=9a^2b^2-2ab+48;ab\le1\), đỉnh \(I\left(\dfrac{1}{9};\dfrac{431}{9}\right)\)
Hàm đồng biến trên khoảng \(\left[\dfrac{1}{9};1\right]\backslash\left\{\dfrac{1}{9}\right\}\)
\(\Rightarrow f\left(ab\right)_{max}=55\Leftrightarrow ab=1\)
\(\Rightarrow E_{max}=55\Leftrightarrow a=b=1\)
Vậy...
2,
\(ab\le\dfrac{1}{4}\left(a+b\right)^2=1\Rightarrow0\le ab\le1\)
\(E=9a^2b^2+6\left(a^3+b^3\right)+5ab\left(a+b\right)+24ab\)
\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+5ab\left(a+b\right)+24ab\)
\(=9a^2b^2-2ab+48\)
Đặt \(ab=x\Rightarrow0\le x\le1\)
\(E=9x^2-2x+48=\left(x-1\right)\left(9x+7\right)+55\le55\)
\(E_{max}=55\) khi \(x=1\) hay \(a=b=1\)
Thực hiện phép tính,rút gon bt:
\(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
\(\dfrac{4a^2-3a+5}{a^3-1}-\dfrac{1-2a}{a^2+a+1}+\dfrac{2y^2a-1}{ }\)
Tìm điều kiện có nghĩa:
1) \(\sqrt{\dfrac{2}{3-2a}}\)
2) \(\sqrt{\dfrac{-1}{2a-5}}\)
3) \(\sqrt{\dfrac{-2}{3-5a}}\)
4) \(\dfrac{1}{\sqrt{-3a}}\)
5) \(\sqrt{\dfrac{-a}{5}}\)
LÀM CHI TIẾT GIÚP MK NHÉ!
1) \(ĐK:3-2a>0\Leftrightarrow a< \dfrac{3}{2}\)
2) \(ĐK:2x-5< 0\Leftrightarrow x< \dfrac{5}{2}\)
3) \(ĐK:3-5a< 0\Leftrightarrow a>\dfrac{3}{5}\)
4) \(ĐK:a< 0\)
5) \(ĐK:-a\ge0\Leftrightarrow a\le0\)
Rút gọn:
\(A=\left[\left(\dfrac{3}{1+x}-\dfrac{x}{x^2+x+1}\right):\dfrac{2x^2+3x}{x+1}+\dfrac{3}{x+1}\right]\cdot\dfrac{x^2+x}{1+3x}\)
\(B=\left[\dfrac{a}{2a-6}-\dfrac{a^2}{a^2-9}+\dfrac{a}{2a-9}\cdot\left(\dfrac{3}{a}+\dfrac{1}{3-a}\right)\right]:\dfrac{a^2-5a-6}{18-2a^2}\)
Tìm x: a, \(\dfrac{\left|x\right|}{6-a-a^2}=\dfrac{1}{a+3}+\dfrac{1}{2-a}\)
b, \(\dfrac{\left|x\right|-3}{a^2-3a+2}=\dfrac{1}{a-1}-\dfrac{1}{a-2}\)
Với giá trị nào của a để các b.thức sau có giá trị = 2:
a) \(\dfrac{3a-1}{3a+1}\) + \(\dfrac{a-3}{a+3}\)
b) \(\dfrac{2a-9}{2a-5}\) + \(\dfrac{3a}{3a-2}\)
c) \(\dfrac{10}{3}\) - \(\dfrac{3a-1}{4a+12}\) - \(\dfrac{7a+2}{6a+18}\)
Chứng minh đẳng thức:
a - [\(\dfrac{\left(16-a\right)a}{a^2-4}\) + \(\dfrac{3+2a}{2-a}\) - \(\dfrac{2-3a}{a+2}\)] : \(\dfrac{a-1}{a^3+4a^2+4a}\) = \(\dfrac{3a}{1-a}\)
Ta có:
\(VT=\left[\dfrac{16a-a^2-\left(3+2a\right)\left(a+2\right)-\left(2-3a\right)\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}\right]:\dfrac{a-1}{a^3+4a^2+4a}\)
\(=\dfrac{16a-a^2-3a-6-2a^2-4a-2a+4+3a^2-6a}{\left(a-2\right)\left(a+2\right)}.\dfrac{a\left(a+2\right)^2}{a-1}\)
\(=\dfrac{a-2}{\left(a-2\right)\left(a+2\right)}.\dfrac{a\left(a+2\right)^2}{a-1}=\dfrac{a\left(a+2\right)}{a-1}\left(a\ne\pm2;a\ne1\right)\)
\(=a-\dfrac{a\left(a+2\right)}{a-1}=\dfrac{a^2-a-a^2-2a}{-1}=\dfrac{-3a}{a-1}=\dfrac{3a}{1-a}=VP\left(đpcm\right)\)