c/m bt sau là dương:
x^2-8x+20
4x^2-12x+11
x^2-x+1
x^2-2x+y^2+4y+6
c/m bt sau là dương:
x^2-8x+20
4x^2-12x+11
x^2-x+1
x^2-2x+y^2+4y+6
a) \(x^2-8x+20=\left(x-4\right)^2+4>0\)
b) \(4x^2-12x+11=\left(2x-3\right)^2+2>0\)
c) \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
d) \(x^2-2x+y^2+4y+6=\left(x-1\right)^2+\left(y+2\right)^2+1>0\)
Chứng minh các biểu thức sau không âm. ( Luôn dương )
a) x^2-8x+20
b) x^2+11
c) 4x^2-12x+11
d) x^2+5y^2+2x+6y+34
g) (15-1)^2+3.(7x+3).(x+1)-(x^2-73)
f) x^2-2x+y^2+4y+6
a) \(x^2-8x+20\)
\(=x^2-2.x.4+16+4\)
\(=\left(x-4\right)^2+4\)
Có: \(\left(x-4\right)^2\ge0\Rightarrow\left(x-4\right)^2+4>0\)
Hay:.............
b) \(x^2+11\)
Có: \(x^2\ge0\Rightarrow x^2+11>0\)
Hay:.............
c) \(4x^2-12x+11\)
\(=4\left(x^2-3x+\frac{11}{4}\right)\)
\(=4\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}+\frac{1}{2}\right)\)
\(=4\left(x-\frac{3}{2}\right)^2+2>0\)
d) \(x^2+5y^2+2x+6y+34\)
\(=x^2+2.x.1+1+y^2+4y^2+2.y.3+9+24\)
\(=\left(x^2+2.x.1+1\right)+\left(y^2+2.y.3+9\right)+4y^2+24\)
\(=\left(x+1\right)^2+\left(y+3\right)^2+\left(2y\right)^2+24\)
Ta có: \(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(y+3\right)^2\ge0\\\left(2y\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2+\left(2y\right)^2+24>0\)
f) \(x^2-2x+y^2+4y+6\)
\(=x^2-2.x.1+1+y^2+2.y.2+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1>0\)
BT: C/m các biểu thức sau luôn có giá trị dương:
a, 2x2 - 8x + 20
b, x2 - x + 1
c, x2 - 2x + y2 + 4y + 6
a) \(2x^2-8x+20\)
\(=2\left(x^2-4x+10\right)\)
\(=2\left(x^2-4x+4+6\right)\)
\(=2\left[\left(x-2\right)^2+6\right]\)
\(=2\left(x-2\right)^2+12>0\forall x\)
b) \(x^2-x+1\)
\(=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
c) \(x^2-2x+y^2+4y+6\)
\(=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1>0\forall x\)
Viết các biểu thức sau dưới dạng tổng của hai bình phương:
5)-12x+13-24y+9x^2+16y^2
6)a^2-4ab+5b^2-4bc+4c^2
7)5x^2+y^2+z^2+4xy-2xz
8)9x^2+25-12xy+2y^2-10y
9)13x^2+4x-12xy+4y^2+1
10)x^2+4y^2+4x-4y+5
11)4x^2-12x+y^2-4y+13
12)x^2+y^2+2y-6x+10
13)4x^2+9y^2-4x+6y+2
14)y^2+2y+5-12x+9x^2
15)x^2+26+6y+9y^2-10x
16)10-6x+12y+9x^2+4y^2
17)16x^2+5+8x-4y+y^2
18)x^2+9y^2+6x-12y
19)5+9x^2+9y^2+6y-12
20)x^2+20+9y^2+8x-12y
21)x^2+4y+4y^2+26-10x
22)4y^2+34-10x+12y+x^2
23)-10x+y^2-8y+x^2+41
24)x^2+9y^2-12y+29-10x5
25)9x^2+4y^2+4y-12x+5
26)4y^2-12x+12y+9x^2+13
27)4x^2+25-12x-8y+y^2
28)x^2+17+4y^2+8x+4y
29)4y^2+12y=25+8x+x^2
30)x^2+20+9y^2+8x-12y
MONG CAC BAN GIUP MINH VOI ,MINH CAN GAP ,CAM ON NHIEU
Tim x,y biet:
1)x^2-2x+5+y^2-4y=0
2)4x^2+y^2-20x+26-2y=0
3)x^2+4y^2+13-6x-8y=0
4)4x^2+4x-6y+9x^2+2=0
5)x^2+y^2+6x-10y+34=0
6)25x^2-10x+9y^2-12y+5=0
7)x^2+9y^2-10x-12y+29=0
89x^2+12x+4y62+8y+8=0
9)4x^2+9y^2+20x-6y+26=0
10)3x^2+3y^2+6x-12y+15=0
11)x^2+4y^2+4x-4y+5=0
12)4x^2-12x+y^2-4y+13=0
13)x^2+y^2+2x-6y+10=0
14)4x^2+9y^2-4x+6y+2=0
15)y^2+2y+5-12x+9x^2=0
16)x^2+26+6y+9y^2-10x=0
17)10-6x+12y+9x^2+4y^2=0
18)16x^2+5+8x-4y+y^2=0
19)x^2+9y^2+4x+6y+5=0
20)5+9x^2+9y^2+6y-12x=0
21)x^2+20+9y62+8x-12y=0
22)x^2=4y+4y^2+26-10x=0
23)4y^2+34-10x+12y+x^2=0
24)-10x+y^2-8y+x^2+41=0
25)x^2+9y^2-12y+29-10x=0
26)9x^2+4y^2+4y+5-12x=0
27)4y^2-12x+12y+9x^2=13=0
28)4x^2+25-12x-8y+y^2=0
29)x62+17+4y^2+8x+4y=0
30)4y^2+12y+25+8x+x^2=0
31)x^2+20+9y^2+8x-12y=0
giup mk voi minh can gap ak, cam on cac ban
Bài 6 chứng minh các biểu thức luôn dương vs mọi x,y
A=x^2+2x+2
B=4x^2-4x+11
C=x^2-x+1
D=x^2-2x+y^2+4y+6
E=x^2-2xy+y^2+x^2-8x+20
a) \(A=x^2+2x+2\)
\(=x^2+2x+1+1\)
\(=\left(x+1\right)^2+1>0\forall x\)
b) \(B=4x^2-4x+11\)
\(=4x^2-4x+1+10\)
\(=\left(2x-1\right)^2+10>0\forall x\)
c) \(C=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
d) Ta có: \(D=x^2-2x+y^2+4y+6\)
\(=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1>0\forall x,y\)
e) Ta có: \(D=x^2-2xy+y^2+x^2-8x+20\)
\(=x^2-2xy+y^2+x^2-8x+16+4\)
\(=\left(x-y\right)^2+\left(x-4\right)^2+4>0\forall x,y\)
\(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)
\(B=4x^2-4x+11=\left(2x-1\right)^2+10\ge10>0\left(\forall x\right)\)
\(C=x^2-x+1=x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
\(D=x^2-2x+y^2+4y+6=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+1\ge1>0\)
\(E=x^2-2xy+y^2+x^2-8x+16+4\)
\(=\left(x-y\right)^2+\left(x-4\right)^2+4\ge4>0\)\(\left(\forall x,y\right)\)
* C/m các biểu thức sau luôn có giá trị dương vs mọi x.
a) A = \(^{x^2-8x+20}\) b) B = \(4x^2-12x+11\)c) C = \(x^2-x+1\)
* tìm x bt :
\(3\left(x+2\right)^2+\left(2x-1\right)^2-7\left(x+3\right).\left(x-3\right)=36\)
Cm: Ta có:
a) A = x2 - 8x + 20 = (x2 - 8x + 16) + 4 = (x - 4)2 + 4 > 0 \(\forall\) x(vì (x - 4)2 \(\ge\)0 \(\forall\)x ; 4 > 0)
=> A luôn dương với mọi x
b) B = 4x2 - 12x + 11 = [(2x)2 - 12x + 9] + 2 = (2x - 3)2 + 2 > 0 \(\forall\)x (vì (2x - 3)2 \(\ge\)0 \(\forall\)x; 2 > 0)
=> B luôn dương với mọi x
c) C = x2 - x + 1 = (x2 - x + 1/4) + 3/4 = (x - 1/2)2 + 3/4 > 0 \(\forall\)x (vì (x - 1/2)2 \(\ge\)0 \(\forall\)x; 3/4 > 0)
=> C luôn dương với mọi x
* Tìm x
3(x + 2)2 + (2x - 1)2 - 7(x + 3)(x - 3) = 36
=> 3(x2 + 4x + 4) + 4x2 - 4x + 1 - 7(x2 - 9) = 36
=> 3x2 + 12x + 12 + 4x2 - 4x + 1 - 7x2 + 63 = 36
=> 8x + 76 = 36
=> 8x = 36 - 76
=> 8x = -40
=> x = -40 : 8 = -5
Chứng minh các biểu thức sau ko âm với mọi x,y
1/ x^2-8x+20
2/ 4x^2-12x+11
3/ x^2-x+1
4/ x^2+5y^2+2x+6y+34
5/ x^2-2x+y^2+4y+6
6/ 15x-1^2+3(7x+3)(x+1)-(x^2-73)
7/ 5x^2+10y-6xy-4x-2y+9
8/ 5x^2+y^2-4xy-2y+8x+2013
Mình trù ai giúp mình bài này đc điểm cao tất cả các môn trong kì thi giữa kì sắp tới, gấp!
Mấy bạn bị lms í=)) dễ v cũng ko biết làm
Mình chỉ đăng lên để thử xem coi ai làm đc ko chứ mình cx ko biết làm. Ai jup mình vớiiiiii
chứng minh các biểu thức sau luôn có giá trị dương với mọi giá trị của biến
a)A=x^2-8x+20 b)B=4x^2-12x+11
c)C=x^2-x+1 d)D=x^2-2x+y^2+4y+6
Ta có : A = x2 - 8x + 20
=> A = x2 - 8x + 16 + 4
=> A = (x - 4)2 + 4
Mà ; (x - 4)2 \(\ge0\forall x\)
Nên : A = (x - 4)2 + 4 \(\ge4\forall x\)
Vậy Amin = 4 , dấu "=" xảy ra khi và chỉ khi x = 4
Ta có : 4x2 - 12x + 11
= (2x)2 - 12x + 9 + 2
= (2x - 3)2 + 2
Mà : (2x - 3)2 \(\ge0\forall x\)
Nên : (2x - 3)2 + 2 \(\ge2\forall x\)
Vậy (2x - 3)2 + 2 \(>0\forall x\)