Giải bất phương trình và biểu diễn nghiệm trên trục số : a) \(\left|x\right|\)> 2 b) 2\(\left|x+2\right|\) + \(\left|3-x\right|\)> 5 Các bạn giúp mk giải 2 câu này nhá Nhanh giúp mk nha mk cần gấp Mk cảm ơn nha ! hihi !
2. Giải bất phương trình và biểu diễn tập nghiệm trên trục số
a) \(3x-2\ge x+6\)
b) (\(3x-6\)) \(-\left(-2x-1\right)\)\(\ge0\)
a)3x-2≥x+6
<=>3x-x≥6+2
<=>2x≥8
<=>x≥4
tập nghiệm của phương trình là
\(S=\left\{xIx\ge4\right\}\)
biểu diễn tập nghiệm trên trục số
b)(3x-6)-(-2x-1)≥0
<=>3x-6++1≥0
<=>3x+2x≥6-1
<=>5x≥5
<=>x≥1
tập nghiệm của phương trình là
\(S=\left\{xIx\ge1\right\}\)
a: =>2x>=8
=>x>=4
b: =>3x-6+2x+1>=0
=>5x-5>=0
=>x>=1
Giải bất phương trình và biểu diễn tập nghiệm trên trục số: x + 2 > 1
x + 2 > 1
⇔ x > 1 – 2
⇔ x > -1.
Vậy bất phương trình có nghiệm x > -1.
Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số
a) \(\frac{2\left(2-3x\right)}{5}< \frac{4-2x}{3}\)
b) \(x\left(9x+1\right)+1\le\left(1-3x\right)^2\)
a, \(\frac{2\left(2-3x\right)}{5}< \frac{4-2x}{3}\Leftrightarrow\frac{4-6x}{5}-\frac{4-2x}{3}< 0\)
\(\Leftrightarrow\frac{12-18x-20+10x}{15}< 0\Leftrightarrow-8x-8< 0\Leftrightarrow x>-1\)vì 15 > 0
-/-/-(----|------>
-1 0
Vậy tập ngiệm của bft là S = { x | x > -1 }
b, \(x\left(9x+1\right)+1\le\left(1-3x\right)^2\Leftrightarrow9x^2+x+1\le1-6x+9x^2\)
\(\Leftrightarrow7x\le0\Leftrightarrow x\le0\)
-------]--/-/-/-/-->
0
Vậy tập nghiệm của bft là S = { x | x =< 0 }
\(\frac{2\cdot\left(2-3x\right)}{5}< \frac{4-2x}{3}\)
\(\frac{4-6x}{5}< \frac{4-2x}{3}\)
\(\left(4-6x\right)\cdot3< \left(4-2x\right)\cdot5\)
\(12-18x< 20-10x\)
\(10x-18x< 20-12\)
\(-8x< 8\)
\(x>-1\)
\(x\cdot\left(9x+1\right)+1\le\left(1-3x\right)^2\)
\(9x^2+x+1\le9x^2-6x+1\)
\(x\le-6x\)
\(x+6x\le0\)
\(7x\le0\)
\(x\le0\)
Cho bất phương trình 2x ≤ 3.
a) Trong các số -2; 5/2; π; √10 số nào là nghiệm, số nào không là nghiệm của bất phương trình trên ?
b) Giải bất phương trình đó và biểu diễn tập nghiệm của nó trên trục số.
a) Ta có: 2. (-2) ≤ 3 nên -2 có là nghiệm của bất phương trình
+) không là nghiệm của bất phương trình ,
+) 2π > 3 nên π không là nghiệm của bất phương trình.
+) nên √10 không là nghiệm của bất phương trình,
Các số là nghiệm của bất phương trình trên là: -2;
Các số không là nghiệm của bất phương trình trên là: ; π; √10
b)2x ≤ 3 ⇔ x ≤ 3/2
Biểu diễn tập nghiệm trên trục số là:
câu 1 giải các phương trình sau.
a) 4x+8=3x-15
b) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
câu 2 giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số
a) 2x-8\(\ge\)0.
b)10+10x>0
câu 3 giải bài toán bằng các lập phương trình
Một học sinh đi từ nhà đến trường với vận tốc 15km/h,rồi từ trường về nhà với vận tốc 20km/h.Biết thời gian đi nhiều hơn thời gian về là 15 phút. Tĩnh quãng đường từ nhà đến trường của người đó.
câu 4 Cho hình chữ nhật ABCD có AB=8cm,BC=6cm.Kẻ đường cao AH của tam giác ADB(AH\(\perp\)DB,H\(\in\)DB).
a) Chúng minh \(\Delta\)HAD đồng dạng \(\Delta\)ABD.
b) Chứng minh:AD\(^2\)=DH.DB.
c)Tính độ dài các đoạn thẳng AH,DH.
d) Tính tỉ số diện tích \(\Delta\)HAD và \(\Delta\)ABD từ đó suy ra tỉ số đồng dạng của nó.
giúp mình với mai mình thi rồi SOS !!!!!!!
2:
a: =>x-4>=0
=>x>=4
b: =>x+1>0
=>x>-1
Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số: a, 3x -11 >5 -x
\(a,3x-11>5-x\\ \Leftrightarrow3x+x>5+11\\ \Leftrightarrow4x< 16\\ \Leftrightarrow x>4\)
Vậy bất phương trình có nghiệm là: \(S=\left\{x|x>4\right\}\)
biểu diễn
Giải bất phương trình và biểu diễn tập nghiệm trên trục số
\(\dfrac{x+4}{5}\) - \(\dfrac{x-2}{3}\) > 2
`(x+4)/5 - (x-2)/3 > 2`
`=> (3x+12 - 5x + 10)/15 > 2`
`=> 24 - 2x > 30`
`=> -2x > 6`
`=> x < -3`.
\(\dfrac{x+4}{5}\) \(-\) \(\dfrac{x-2}{3}\) \(>\) \(2\)
\(=\) \(\dfrac{3x+12-5x+10}{15}\) \(>\) \(2\)
\(=\) \(24-2x>30\)
\(=\) \(-2x>6\)
\(=\) \(x< -3\)
Giải bất phương trình và biểu diễn tập nghiệm trên trục số: x - 1 < 3
x – 1 < 3
⇔ x < 3 + 1 (Chuyển vế và đổi dấu hạng tử -1)
⇔ x < 4
Vậy bất phương trình có nghiệm x < 4.
Giải các bất phương trình sau và biểu diễn trục số :
a)\(\left(2x-3\right)\left(x+4\right)>2\left(x^2+1\right)\)
b)\(\dfrac{3x-1}{x-2}-\dfrac{5x+1}{3}>4\)
a: =>2x^2+8x-3x-12<2x^2+2
=>5x<14
=>x<14/5
b: =>\(\dfrac{9x-3-\left(5x+1\right)\left(x-2\right)}{3\left(x-2\right)}-4>0\)
=>\(\dfrac{9x-3-5x^2+10x-x+2-12\left(x-2\right)}{3\left(x-2\right)}>0\)
=>\(\dfrac{-5x^2+18x-1-12x+24}{3\left(x-2\right)}>0\)
=>\(\dfrac{-5x^2+6x+23}{x-2}>0\)
TH1: x-2>0 và -5x^2+6x+23>0
=>x>2 và \(\dfrac{3-2\sqrt{31}}{5}< x< \dfrac{3+2\sqrt{31}}{5}\)
=>\(2< x< \dfrac{3+2\sqrt{31}}{5}\)
TH2: x-2<0 và -5x^2+6x+23<0
=>x<2 và \(\left[{}\begin{matrix}x< \dfrac{3-2\sqrt{31}}{5}\\x>\dfrac{3+2\sqrt{31}}{5}\end{matrix}\right.\)
=>\(x< \dfrac{3-2\sqrt{31}}{5}\)
Giải các bất phương trình sau rồi biểu diễn tập nghiệm của chúng trên trục số:
1) \(\left(x+3\right)^2-3\left(2x-1\right)>x\left(x-4\right)\)
2) \(1+\dfrac{x+1}{3}>\dfrac{2x-1}{6}-2\)
3) \(x-\dfrac{2x-7}{4}< \dfrac{2x}{3}-\dfrac{2x+3}{2}-1\)
4) \(\dfrac{2x+1}{x-3}\le2\)
5) \(\dfrac{12-3x}{2x+6}>3\)
6) \(x^2+3x-4\le0\)
7) \(\dfrac{5}{5x-1}< \dfrac{-3}{5-3x}\)
8) \(\left(2x-1\right)\left(3-2x\right)\left(1-x\right)>0\)
1: \(\Leftrightarrow x^2+6x+9-6x+3>x^2-4x\)
=>-4x<12
hay x>-3
2: \(\Leftrightarrow6+2x+2>2x-1-12\)
=>8>-13(đúng)
4: \(\dfrac{2x+1}{x-3}\le2\)
\(\Leftrightarrow\dfrac{2x+1-2x+6}{x-3}< =0\)
=>x-3<0
hay x<3
6: =>(x+4)(x-1)<=0
=>-4<=x<=1