Giải bpt
a) 3(x-2)(x+2) < 3x2 + x
b) (x+4)(5x-1) > 5x2 + 16x + 2
Giải các BPT sau:
a) \(16x-5x^2-3\le0\)
b) \(\dfrac{2x+5}{x-24}>1\)
`a)16x-5x^2-3 <= 0`
`<=>5x^2-16x+3 >= 0`
`<=>5x^2-15x-x+3 >= 0`
`<=>(x-3)(5x-1) >= 0`
`<=>` $\left[\begin{matrix} \begin{cases} x-3 \ge 0<=>x \ge 3\\5x-1 \ge 0<=>x \ge \dfrac{1}{5} \end{cases}\\ \begin{cases} x-3 \le 0<=>x \le 3\\5x-1 \le 0<=>x \le \dfrac{1}{5} \end{cases}\end{matrix}\right.$
`<=>` $\left[\begin{matrix} x \ge 3\\ x \le \dfrac{1}{5}\end{matrix}\right.$
Vậy `S={x|x >= 3\text{ hoặc }x <= 1/5}`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
`b)[2x+5]/[x-24] > 1`
`<=>[2x+5]/[x-24]-1 > 0`
`<=>[2x+5-x+24]/[x-24] > 0`
`<=>[x+29]/[x-24] > 0`
`<=>` $\left[\begin{matrix} x < -29 \\ x > 24\end{matrix}\right.$
Vậy `S={x|x > 24\text{ hoặc }x < -29}`
Bài 1: Thực hiện phép tính:
a) 2x.(3x + 3) b) 5x.(3x2-2x + 1) c) 3x2(2x +4)
d) 5x2.(3x2 + 4x – 1) e) (x-1).(2x +3) f) (x+2).(3x-5)
Bài 2: Tìm x, biết:
a) 3x(x+1) – 3x2 = 6
b) 3x(2x+1) – (3x +1).(2x-3) = 10
Bài 1:
\(a,=6x^2+6x\\ b,=15x^3-10x^2+5x\\ c,=6x^3+12x^2\\ d,=15x^4+20x^3-5x^2\\ e,=2x^2+3x-2x-3=2x^2+x-3\\ f,=3x^2-5x+6x-10=3x^2+x-10\)
Bài 2:
\(a,\Leftrightarrow3x^2+3x-3x^2=6\\ \Leftrightarrow3x=6\Leftrightarrow x=2\\ b,\Leftrightarrow6x^2+3x-6x^2+9x-2x-3=10\\ \Leftrightarrow10x=13\Leftrightarrow x=\dfrac{13}{10}\)
Phân tích các đa thức sau thành nhân tử:
a) 5x-20xy
b) x2-9
c) x2-2xy+y2-z2
d) 5x.(x-1)-2.(x-1)
e) x2+4x+3
f) x3-x 3x2y+3xy2+y3-y
g) x2-x-y2-y
h) 16x-5x2-3
i) x3-4x
j) 2x2-6x
k) x3- 3x2-4x+12
l) x2-y2-5x+5y
Mn giúp em giải vs em cần gấp để lm bài kiểm tra.Em cảm ơn trc ạ
Bài 1: Làm tính nhân
a. 3x2 (5x2 - 4x +3)
b. – 5xy(3x2y – 5xy +y2 )
c. (5x2 - 4x)(x -3)
d. (x – 3y)(3x2 + y2 +5xy)
Bài 2: Rút gọn các biểu thức sau.
a.(x-3)(x + 7) – (x +5)(x -1)
b. (x + 8)2 – 2(x +8)(x -2) + (x -2)2
c. x2 (x – 4)(x + 4) – (x2 + 1)(x2 - 1)
d. (x+1)(x2 – x + 1) – (x – 1)(x2 +x +1)
Bài 1:
\(a,=15x^4-12x^3+9x^2\\ b,=-15x^3y^2+25x^2y^2-5xy^3\\ c,=5x^3-15x^2-4x^2+12x=5x^3-19x^2+12x\\ d,=3x^3-9x^2y+xy^2-3y^3+5x^2y-15xy^2=3x^3-3y^3-4x^2y-14xy^2\)
Bài 2:
\(a,=x^2+4x-21-x^2-4x+5=-16\\ b,=x^2+16x+64-2x^2-12x+32+x^2-4x+4=100\\ c,=x^4-16x^2-x^4+1=1-16x^2\\ d,=x^3+1-x^3+1=2\)
Bài 1: Làm tính nhân:
a. 3x2(5x2- 4x +3) b. – 5xy(3x2y – 5xy +y2)
c. (5x2- 4x)(x -3) d. (x – 3y)(3x2 + y2 +5xy)
Bài 2: Rút gọn các biểu thức sau:
a.(x-3)(x + 7) – (x +5)(x -1) b. (x + 8)2 – 2(x +8)(x -2) + (x -2)2
c. x2(x – 4)(x + 4) – (x2 + 1)(x2- 1) d. (x+1)(x2 – x + 1) – (x – 1)(x2 +x +1)
Bài 3: Phân tích các đa thức sau thành nhân tử:
a. – 24x^2y^2 + 12xy^3
b. x2 – 6 x +xy - 6y
c. 2x2 + 2xy - x - y
d. ax – 2x - a2 +2a
e. x3- 3x2 + 3x -1
f. 3x2 - 3y2 - 12x – 12y
g. x2 - 2xy – x2 + 4y2
h. x2 + 2x + 1 - 16
i. x2 - 4x + 4 - 25y2
k. x2 - 6xy + 9y2 -25z2
l. 81 – x2 + 4xy – 4y2
m.x2 +6x –y2 +9
n.x2 – 2x - 4y2 + 1
o. x2 – 2x -3
p. x2 + 4x -12 q. x2 + x – 6
s. x2 -5x -6
t. x2 - 8 x – 9
u, x2 + 3x – 18
v, x2 - 8x +15
x, x2 + 6x +8
z, x2 -7 x + 6
w, 3x2 - 7x + 2
y, x4 + 64
Bài 4: Tìm x biết:
a. x2-25 –( x+5 ) = 0
b. 3x(x-2) – x+ 2 = 0
c. x( x – 4) - 2x + 8 = 0
d. 3x (x + 5) – 3x – 15=0
e. ( 3x – 1)2 – ( x +5)2=0
f. ( 2x -1)2 – ( x -3)2=0
g.(2x -1)2- (4x2 – 1) = 0
g. x2(x2 + 4) – x2 – 4 = 0
i.x4 - x3 +x2 - x =0
k. 4x2 – 25 –( 2x -5)(2x +7)=0
l.x3 – 8 – (x -2)(x -12) = 0
m.2(x +3) –x2– 3x=0
Bài 5: Làm phép chia:
a. (x4+ 2x3+ 10x – 25) : (x2 + 5) b. (x3- 3x2+ 5x – 6): ( x – 2)
Bài 6: Tìm số a để đa thức 3x3 + 2x2 – 7x + a chia hết cho đa thức 3x – 1
Bài 1. Làm tính nhân :
a) 3x2(5x2- 4x +3)
b) – 5xy(3x2y – 5xy +y2)
c) (5x2- 4x)(x -3)
d) (x – 3y)(3x2 + y2 +5xy)
\(a,=15x^4-12x^3+9x^2\\ b,=-15x^3y^2+25x^2y^2-5xy^3\\ c,=5x^3-19x^2+12x\\ d,=3x^3+xy^2+5x^2y-9x^2y-3y^3-15xy^2\\ =3x^3-3y^3-14xy^2-4x^2y\)
Tìm x biết.
a) 4x^2 - 49 = 0 b) x^2 + 36 = 12x
c) 1/16x^2 - x + 4 = 0 d) x^3 -3√3x2 + 9x - 3√3 = 0
e) (x - 2)^2 - 16 = 0 f) x^2 - 5x - 14 = 0
g) 8x(x - 3) + x - 3 = 0
a, 4x2 - 49 = 0
⇔⇔ (2x)2 - 72 = 0
⇔⇔ (2x - 7)(2x + 7) = 0
⇔{2x−7=02x+7=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=72x=−72⇔{2x−7=02x+7=0⇔{x=72x=−72
b, x2 + 36 = 12x
⇔⇔ x2 + 36 - 12x = 0
⇔⇔ x2 - 2.x.6 + 62 = 0
⇔⇔ (x - 6)2 = 0
⇔⇔ x = 6
e, (x - 2)2 - 16 = 0
⇔⇔ (x - 2)2 - 42 = 0
⇔⇔ (x - 2 - 4)(x - 2 + 4) = 0
⇔⇔ (x - 6)(x + 2) = 0
⇔{x−6=0x+2=0⇔{x=6x=−2⇔{x−6=0x+2=0⇔{x=6x=−2
f, x2 - 5x -14 = 0
⇔⇔ x2 + 2x - 7x -14 = 0
⇔⇔ x(x + 2) - 7(x + 2) = 0
⇔⇔ (x + 2)(x - 7) = 0
⇔{x+2=0x−7=0⇔{x=−2x=7
a,\(4x^2-49=0\)
\(\Leftrightarrow\left(2x\right)^2-7^2=0\)
\(\Leftrightarrow\left(2x-7\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\2x+7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=7\\2x=-7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{7}{2}\end{cases}}}\)
b.\(x^2+36=12x\)
\(\Leftrightarrow x^2-12x+36=0\)
\(\Leftrightarrow\left(x-6\right)^2=0\)
\(\Leftrightarrow x-6=0\Leftrightarrow x=6\)
c.\(\frac{1}{16x^2}-x+4=0\)
\(\Leftrightarrow\left(\frac{1}{4x}\right)^2-2.\frac{1}{4x}.2+2^2=0\)
\(\Leftrightarrow\left(\frac{1}{4x}-2\right)^2=0\)
........