cho ba đa thức x^4+7x^2;x^2+7;x^4-7x^2 .hãy chon một đa thức rồi điền vào chỗ có dấu ... trong đẳng thức sau:
x^2/x^2+7=..../x^4-49
Cho đa thức :
A = 16x^4 -8x^3y +7x^2y^2 -9y^4
B = -15x^4 +3x^3y -5x^2y^2 -6y^4
C = 5x^3y +3x^2y^2 +17y^4 +1
CMR : Ít nhất một trong Ba đa thức này phải có một đa thức có giá trị dương với mọi x,y
Giả sử 3 đa thức trên cùng nhận giá trị âm với mọi x, y.
Ta có: \(A.B.C\)\(=\left(16x^4-8x^3y+7x^2y^2-9y^4\right)+\left(-15x^4+3x^3y-5x^2y^2-6y^4\right)+\left(5x^3y+3x^2y^2+17y^4+1\right)\)
\(=16x^4-8x^3y+7x^2y^2-9y^4-15x^4+3x^3y-5x^2y^2-6y^4+5x^3y+3x^2y^2+17y^4+1\)
\(=\left(16x^4-15x^4\right)-\left(8x^3y-3x^3y-5x^3y\right)+\left(7x^2y^2-5x^2y^2+3x^2y^2\right)-\left(9y^4+6y^4-17y^4\right)+1\)
\(=x^4-0+5x^2y^2-2y^4+1\)
\(=x^4+5x^2y^2-2y^4+1\)
Ta thấy: \(x^4\ge0\) \(\forall x\) \(;\) \(x^2y^2\ge0\)\(\forall x,y\) \(;\) \(y^4\ge0\)\(\forall y\)
\(\Rightarrow\)\(\left(x^4+5x^2y^2-2y^4+1\right)\ge1\) \(\forall x,y\)
\(\Rightarrow\)\(A.B.C\)nhận giá trị dương
\(\Rightarrow\)3 đa thức trên không thể cùng nhận giá trị âm với mọi x, y
\(\Rightarrow\)\(dpcm\)
Cho đa thức
\(M\left(x\right)=-2x^5+5x^2+7x^4-9x+8+2x^5-7x^4-4x^2+6\)
\(N\left(x\right)=7x+x-5x+2x-7x+5x+3\)
a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức theo lũy thừa giảm dần của biến
b) Tìm hệ số cao nhất , hệ số tự do và bậc của đa thức M(x) , N(x)
c) Tính M(x)+N(x) , M(x)- N(x)
d) Chứng tỏ x=2 là nghiệm của đa thức M ( x) nhưng k là nghiệm của đa thức N (x) . Tìm nghiệm còn lại của M(x)
i) Tìm GTNN của N(x)
a) \(M\left(x\right)=-2x^5+5x^2+7x^4-5x+8+2x^5-7x^4-4x^2+6\)
\(=\left(-2x^5+2x^5\right)+\left(7x^4-7x^4\right)+\left(5x^2-4x^2\right)-9x+\left(8+6\right)\)
\(=x^2-9x+14\)
\(N\left(x\right)=7x^7+x^6-5x^3+2x^2-7x^7+5x^3+3\)
\(=\left(7x^7-7x^7\right)+x^6-\left(5x^3-5x^3\right)+2x^2+3\)
\(=x^6+2x^2+3\)
b) Đa thức M(x) có hệ số cao nhất là 1
hệ số tự do là 14
bậc 2
Đa thức N(x) có hệ số cao nhất là 1
hệ số tự do là 3
bậc 6
1/ Phân tích đa thức thành nhân tử:
\(x^4+6x^3+7x^2-6x+1\)
2/ Tìm đa thức bậc ba P(x), biết P(x) chia cho x-1; x-2; x-3 đều dư 6 và P(-1)= -18.
tìm đa thức thương của phép chia đa thức A(x) cho đa thức B(x) biết A(x)=2x^3-7x^2-8x-4 và B(x)=x-2
Lời giải:
Ta có:
$A(x)=2x^3-7x^2-8x-4$
$=2x^2(x-2)-3x(x-2)-14(x-2)-32$
$=(x-2)(2x^2-3x-14)-32$
$=B(x)(2x^2-3x-14)-32$
Vậy đa thức thương là $2x^2-3x-14$
Đa thức (x 3 – 7x + a) chia hết cho đa thức x + 3 khi:
A.
a = 6
B.
a = 2
C.
a = 8
D.
a = 4
\(\Leftrightarrow x^3-7x+a=\left(x+3\right)\cdot a\left(x\right)\\ \text{Thay }x=-3\Leftrightarrow-27+21+a=0\\ \Leftrightarrow a=6\)
Chọn A
cho hai đa thức A(x)=2x2-4+x3-7x và B(x)=x4-x3+x2+7x+4
Tìm đa thức D(x) biết 2A(x)-D(x)=3B(x)
2A(x)-D(x)=3B(x)
<=>D(x)=2A(x)-3B(x)
=4x4-8+2x3-14x-(3x4-3x3+3x2+21x+12)
Rút gọn đi ta đc:D(x)=x4+5x3-3x2-35x-20
Đúng thì chọn nha!
Xác định a sao cho đa thức x^4+6x^3+7x^2-6x+a chia hết cho đa thức x^2+3x+1
bạn tìm hiểu ở bài 12 sgk, đại khái ta sẽ có
x^4+6x^3+7x^2-6x+a chia x^2+3x+1 dư a+3
mà để 2 đa thức chia hết thì x+3=0=)x=-3
thực ra còn có cách khác hay hơn, nhưng mình làm ko ra nên dùng tạm cách này, thông cảm :)
x^4+6x^3+7x^2-6x+a=x^4+2.3x.x^2+9x^2-6x-2x^2+a
=(x^2+3x)^2-2(3x+x^2)+a=(3x+x^2)(x^2+3x-2)+a
vậy a=3(3x+x^2)
tôi chịu, sai thì... T.T
Tìm a để đa thức x^4 + 6x^3 + 7x^2 - 6x + a chia hết cho đa thức x^2 +3x-1