Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anh Nguyễn Hoàng
Xem chi tiết
Đặng Thị Thu Thảo
Xem chi tiết
Trần Minh Hoàng
22 tháng 1 2021 lúc 18:14

Do \(a,b,c\geq 0\) và \(a+b+c=1\) nên \(a,b,c\le1\).

Xét hiệu \(5a+4-\left(a+2\right)^2=a\left(1-a\right)\ge0\)

\(\Rightarrow5a+4\ge\left(a+2\right)^2\)

\(\Rightarrow\sqrt{5a+4}\ge a+2\).

Tương tự, \(\sqrt{5b+4}\ge b+2;\sqrt{5c+4}\ge c+2\).

Cộng vế với vế ta có \(T\ge a+b+c+6=7\).

Đẳng thức xảy ra khi a = 1; b = c = 0 và các hoán vị.

Vậy Min T = 7 khi a = 1; b = c = 0. 

tthnew
22 tháng 1 2021 lúc 18:21

Một ý tưởng để có được bất đẳng thức phụ \(\sqrt{5a+4}\ge a+2\forall0\le a\le1.\)

Do $0\leq a \leq 1$ nên $a\ge a^2.$

Ta có: \(\sqrt{5a+4}=\sqrt{a+4a+4+\ 4}\ge\sqrt{a^2+4a+4+4}=a+2\)

Ngoài ra còn một cách là giả sử \(\sqrt{5a+4}\ge ma+n\)

rồi đi chọn $m,n$ theo điểm rơi.

Không biết còn cách nào khác không nhỉ?

Kimian Hajan Ruventaren
Xem chi tiết
Hồng Phúc
16 tháng 1 2021 lúc 20:25

Áp dụng BĐT BSC:

\(P=\dfrac{1}{a}+\dfrac{4}{b}+\dfrac{9}{c}\ge\dfrac{\left(1+2+3\right)^2}{a+b+c}=\dfrac{36}{1}=36\)

\(minP=36\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{6}\\b=\dfrac{1}{3}\\c=\dfrac{1}{2}\end{matrix}\right.\)

Trần Đức Huy
Xem chi tiết
Rhider
1 tháng 2 2022 lúc 10:35

đề sai

Phạm Tuấn Kiệt
Xem chi tiết
pham trung thanh
30 tháng 5 2018 lúc 7:58

UCT. Chứng minh \(2a+\frac{1}{a}\ge\frac{a^2+5}{2}\) với \(0< a^2;b^2;c^2< \sqrt{3}\)

Tương tự cộng lại là xong

Nguyen Anh
29 tháng 5 2018 lúc 23:25

Theo bất đẳng thức Cauchy, ta có:

\(a+\frac{1}{a}\ge2\)và \(b+\frac{1}{b}\ge2\)và \(c+\frac{1}{c}\ge2\)

\(\Rightarrow P\ge a+b+c+6\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)( thỏa đề bài)

\(\Leftrightarrow minP=1+1+1+6=9\)

Hồ Minh Phi
Xem chi tiết
alibaba nguyễn
5 tháng 9 2018 lúc 8:25

\(P=\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\ge\frac{\left(1+1+2\right)^2}{a+b+c}=\frac{16}{4}=4\)

Liko Hoàng Minh
5 tháng 9 2018 lúc 15:05

P=1/a+1/b+4/c > {1+1+2}^2/a+b+c

                       =16/4=16:4=4

Doraemon
6 tháng 9 2018 lúc 11:29

Ta có:

\(P=\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\)

\(P=\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\ge\frac{\left(1+1+2\right)^2}{a+b+c}\)

\(P=\frac{16}{4}\)

\(P=4\)

Vậy \(P=4\)

Xem chi tiết
tth_new
5 tháng 2 2020 lúc 19:10

Giả sử \(c=min\left\{a,b,c\right\}\)và đặt \(2t=a+b=-c\Rightarrow t=-\frac{c}{2}\)

+)Nếu \(c\ge0\) thì \(a,b\ge0\). Khi đó: \(P\ge3\)

Đẳng thức xảy ra khi \(a=b=c=0\)

+) Nếu \(c< 0\Rightarrow t>0\). Ta có:

\(P\ge\frac{\left(a^2+b^2+2\right)^2}{2}+\left(c^2+1\right)^2+\frac{3\sqrt{6}c\left(a+b\right)^2}{2}\) (vì c < 0)

\(\ge\frac{\left[\frac{\left(a+b\right)^2}{2}+2\right]^2}{2}+\left(c^2+1\right)^2+3\sqrt{6}c.\frac{\left(a+b\right)^2}{2}\)

\(=\frac{\left(2t^2+2\right)^2}{2}+\left(c^2+1\right)^2+6\sqrt{6}t^2c\)

\(=\frac{\left[2\left(-\frac{c}{2}\right)^2+2\right]^2}{2}+\left(c^2+1\right)^2+6\sqrt{6}\left(-\frac{c}{2}\right)^2c\)

\(=\frac{9}{8}c^2\left(c+\frac{2\sqrt{6}}{3}\right)^2+3\ge3\)

\(\left(a;b;c\right)=\left(\sqrt{\frac{2}{3}};\sqrt{\frac{2}{3}};-2\sqrt{\frac{2}{3}}\right)\) (và các hoán vị, trong trường hợp tổng quát)

Vậy....

P/s: Em không chắc lắm, chưa check lại.

Khách vãng lai đã xóa
Phung Ngoc Tam
Xem chi tiết
Thanh Tùng DZ
21 tháng 4 2019 lúc 15:41

1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

Tương tự :  \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\)\(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)

\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1

Thanh Tùng DZ
21 tháng 4 2019 lúc 15:43

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)

Thanh Tùng DZ
21 tháng 4 2019 lúc 15:52

Xét hiệu \(A=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-\frac{b}{c}-\frac{c}{b}-\frac{a}{c}\)

\(\frac{a^2c+b^2a+c^2b-b^2c-c^2a-a^2b}{abc}\)

\(\frac{\left(c-b\right)\left(a-c\right)\left(a-b\right)}{abc}\)

Ta thấy c -b \(\ge\)0 ; a - c \(\le\)0 ; a - b \(\le\)0 nên ( c - b ) ( a - c ) ( a - b )\(\ge\)0

Mà abc > 0 nên A \(\ge\)0 => ....

Nguyễn Thị Huyền Diệp
Xem chi tiết
camcon
Xem chi tiết
Xyz OLM
30 tháng 12 2021 lúc 23:57

\(4M=\dfrac{4}{\left(a+b\right)+\left(a+c\right)}+\dfrac{4}{\left(a+b\right)+\left(b+c\right)}+\dfrac{4}{\left(c+a\right)+\left(b+c\right)}\)

\(\le\dfrac{1}{a+b}+\dfrac{1}{a+c}+\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{b+c}\)

\(=\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)

=> 8M \(\le\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)

\(\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{a}=2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=8\)

=> \(M\le1\)

Dấu "=" xảy ra <=> a = b = c = 3/4 

Nguyễn Việt Lâm
30 tháng 12 2021 lúc 23:58

\(\dfrac{1}{2a+b+c}=\dfrac{1}{a+a+b+c}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{16}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

Tương tự:

\(\dfrac{1}{a+2b+c}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{c}\right)\) ; \(\dfrac{1}{a+b+2c}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{c}\right)\)

Cộng vế:

\(M\le\dfrac{1}{16}\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\)

\(M_{max}=1\)  khi \(a=b=c=\dfrac{3}{4}\)