tính(rút gọn)
\(\dfrac{x}{2a-b}-\dfrac{4ab}{4a^2-b^2}+\dfrac{b}{2a+b}\)
\(\)Bài 1: Rút gọn:
M= (\(\dfrac{2a}{2a+b}\)-\(\dfrac{4a^2}{4a^2+4ab+b^2}\)):(\(\dfrac{2a}{4a^2-b^2}+\dfrac{1}{b-2a}\))
Bài 2: Cho biểu thức:
P=(\(\dfrac{a+6}{3a+9}-\dfrac{1}{a+3}\)):\(\dfrac{a+2}{27a}\)
a) Tìm ĐKXĐ và rút gọn
b) Tính giá trị của P tại a=1
2.
\(P=\left(\dfrac{a+6}{3\left(a+3\right)}-\dfrac{1}{a+3}\right).\dfrac{27a}{a+2}=\left(\dfrac{a+3}{3\left(a+3\right)}\right).\dfrac{27a}{a+2}=\dfrac{27a}{3\left(a+2\right)}=\dfrac{9a}{a+2}\)
ĐKXĐ là :
\(a\ne0;-3;-2\)
Vs a = 1 ta có:
=> P=3
1.
\(M=\left(\dfrac{2a}{2a+b}-\dfrac{4a^2}{\left(2a+b\right)^2}\right):\left(\dfrac{2a}{\left(2a-b\right)\left(2a+b\right)}-\dfrac{1}{2a-b}\right)=\left(\dfrac{4a^2+2ab-4a^2}{\left(2a+b\right)^2}\right).\left(\dfrac{\left(2a+b\right)\left(2a-b\right)}{b}\right)=\dfrac{2a.\left(2a-b\right)}{\left(2a+b\right)}\)
\(A=\left(\dfrac{1}{2a-b}-\dfrac{a^2-1}{2a^3-b+2a-a^2b}\right)\div\left(\dfrac{4a+2b}{a^3b+ab}-\dfrac{2}{a}\right)\)
a) rút gọn biểu thức A
b)tính giá trị biểu thức A biết 4a^2+b^2=5ab a>b>0
Rút gọn biểu thức M = \(a+\dfrac{2a+b}{2-b}+\dfrac{2a-b}{2+b}+\dfrac{4a}{b^2-4}\) với \(b=\dfrac{a}{a+1}\)
\(M=a+\dfrac{4a+2ab+2b+b^2+4a-2ab-2b+b^2-4a}{\left(2-b\right)\left(2+b\right)}\\ M=a+\dfrac{4a+2b^2}{\left(2-b\right)\left(2+b\right)}=\dfrac{4a-ab^2+4a+2b^2}{\left(2-b\right)\left(2+b\right)}\\ M=\dfrac{8a-ab^2+2b^2}{4-b^2}\)
Ta có \(8a-b^2\left(a-2\right)=8a-\dfrac{a^2\left(a-2\right)}{\left(a+1\right)^2}=\dfrac{8a^3+16a^2+8a-a^3+2a^2}{\left(a+1\right)^2}=\dfrac{7a^3+18a^2+8a}{\left(a+1\right)^2}\)
\(4-b^2=4-\dfrac{a^2}{\left(a+1\right)^2}=\dfrac{4a^2+8a+4-a^2}{\left(a+1\right)^2}=\dfrac{3a^2+8a+4}{\left(a+1\right)^2}\)
\(\Leftrightarrow M=\dfrac{7a^3+18a^2+8a}{3a^2+8a+4}=\dfrac{a\left(7a+4\right)\left(a+2\right)}{\left(3a+2\right)\left(a+2\right)}=\dfrac{a\left(7a+4\right)}{3a+2}\)
Câu 1:
\(C=\dfrac{1}{x+2}-\dfrac{x^3-4x}{x^2+4}\cdot\left(\dfrac{1}{x^2+4x+4}-\dfrac{1}{4-x^2}\right)\)
a) Rút gọn C
b) x bằng mấy để C = 1?
Câu 2:
\(B=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
a) Rút gọn B
b) x bằng mấy để \(\left|B\right|=B\)
Câu 3: Rút gọn:
\(A=\left[\dfrac{\left(1-a\right)^2}{3a+\left(a-1\right)^2}+\dfrac{2a^2-4a-1}{a^3-1}-\dfrac{1}{1-a}\right]:\dfrac{2a}{a^3+a}\)
(\(\dfrac{2}{2a-b}\)+\(\dfrac{6b}{b^{2^{ }}-4a^2}\)-\(\dfrac{4}{2a+b}\)):(1+\(\dfrac{4a^{2^{ }}+b^{2^{ }}}{4a^{2^{ }}-b^2}\))
Rút gọn
\(=\left(\dfrac{2\left(2a+b\right)-6b-4\left(2a-b\right)}{\left(2a-b\right)\left(2a+b\right)}\right):\dfrac{4a^2-b^2+4a^2+b^2}{\left(2a-b\right)\left(2a+b\right)}\)
\(=\dfrac{4a+2b-6b-8a+4b}{8a^2}\)
\(=\dfrac{-4a}{8a^2}=\dfrac{-1}{2a}\)
Rút gọn A=\((\dfrac{1}{2a+b} - \dfrac{a^2 -1 }{2a^3 -b +2a -a^2b}) : (\dfrac{4a+2b}{a^3b+ab} - \dfrac{2}{a})\)
Tính A biết 4a^2+b^2=5ab và a>b>0
Quy đồng mẫu các phân thức sau:(có thể tính luôn càng tốt ạ)
a) \(\dfrac{a+x}{a^2x}\);\(\dfrac{x+b}{x^2b}\);\(\dfrac{b+a}{b^2a}\)
b) \(\dfrac{a-x}{6x^2-ax-2a^2}\);\(\dfrac{a+x}{3x^2+4ax-4a^2}\)
c) \(\dfrac{1-2x}{2x}\) + \(\dfrac{2x}{2x-1}\) + \(\dfrac{1}{2x-4x^2}\)
Mn giúp mik vs nhaaa! Tầm trc cmai nhoaaa!
Thanks mn trc ạ!!!
Rút gọn các biểu thức sau:
\(A=\dfrac{a^2-1}{3}\sqrt{\dfrac{9}{\left(1-a\right)^2}}\) với a < 1
\(B=\sqrt{\left(3a-5\right)^2}-2a+4\) với a < \(\dfrac{1}{2}\)
\(C=4a-3-\sqrt{\left(2a-1\right)^2}\) với a < 2
\(D=\dfrac{a-2}{4}\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\) với a < 2
a) Ta có: \(A=\dfrac{a^2-1}{3}\cdot\sqrt{\dfrac{9}{\left(1-a\right)^2}}\)
\(=\dfrac{\left(a+1\right)\cdot\left(a-1\right)}{3}\cdot\dfrac{3}{\left|1-a\right|}\)
\(=\dfrac{\left(a+1\right)\left(a-1\right)}{1-a}\)
=-a-1
b) Ta có: \(B=\sqrt{\left(3a-5\right)^2}-2a+4\)
\(=\left|3a-5\right|-2a+4\)
\(=5-3a-2a+4\)
=9-5a
c) Ta có: \(C=4a-3-\sqrt{\left(2a-1\right)^2}\)
\(=4a-3-\left|2a-1\right|\)
\(=4a-3-2a+1\)
\(=2a-2\)
d) Ta có: \(D=\dfrac{a-2}{4}\cdot\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\)
\(=\dfrac{a-2}{4}\cdot\dfrac{4a^2}{\left|a-2\right|}\)
\(=\dfrac{a^2\left(a-2\right)}{-\left(a-2\right)}\)
\(=-a^2\)
Giải phương trình:
a, \(\dfrac{t}{2a}-\dfrac{4a}{3}=1\)
b, \(\dfrac{x-2a}{b}=2+\dfrac{x+b}{a}\) (a, b là các hằng số)