Cho tam giác ABC vuông cân tại A. Một đường thẳng d qua A và không cắt BC. Gọi M là trung điểm BC. Gọi H.K là chân vuông góc từ B và C đến đường thẳng d. CMR: MHK là tam vuông cân.
Cho tam giác ABC, đường thẳng d đi qua A và không cắt cạnh BC. Gọi D,E thứ tự là chân đường vuông góc kẻ từ B,C xuống d. Gọi M là trung điểm BC. Chứng minh tam giác MDE cân
Cho tam giác ABC, đường thẳng d đi qua A và không cắt cạnh BC. Gọi D,E lần lượt là chân đường vuông góc kể từ B,C xuống d. Gọi M là trung điểm của BC. Chứng Minh tam giác MDE cân
Cho tam giác ABC vuông cân tại A, d là đường thẳng bất kì qua A (d không cắt đoạn BC).Từ B và C kẻ BD và CE cùng vuông góc với d
a) CMR: BD//CE
b)tam giác ADB = tam giác CEA
c)BD+CE=DE
d) gọi M là trung điểm BC. CMR tam giacsDAM=tam giác ECM và tam giác DME vuông cân
a) Ta có BD và CE đều vuông góc với d
Nên góc CEA=góc BDA (=90 độ)
Mà 2 góc này ở vị trí đồng vị
Nên BD//CE
b) Ta có d// BC
---------> góc ECB=góc DBC=góc CED ( =90 dộ )
Nên ECDB là HCN
Mà ABC là vuông cân nên góc ECA=góc DBA= 45 độ
-------->tam giác CEA = tam giác DBA ( cạnh huyền góc nhọn)
c)( mình lười bấm quá nên mình làm tắt nha)
Chứng minh góc CAE= góc BAD ( do góc ECA= góc DBA và góc ACB=góc EAC=45 độ do ED//BC)
Nên CE=EA và DB=AD, mặt khác AE=AC ( do 2 tam giác bằng nhau cm câu b)
Cho tam giác ABC vuông cân tại A, d là đường thẳng bất kì đi qua A (d không cắt đoạn BC). Từ B và C kẻ BD và CE cùng vuông góc với d.
a) CMR: BD//CE.
b). CMR: tam giác ADB = tam giác CEA.
c) CMR: BD + CE= DE.
d) Gọi M là trung điểm của BC. CMR: tam giác DAM = tam giác ECM và tam giác DME vuông cân.
1)cho tam giác ABC vuông cân tại A. M là trung điểm của BC. G thuộc AB sao cgo AG=\(\frac{1}{3}\)AB, E là chân đường vuông góc hạ từ M xuống CG. MG và AC cắt nhau tại D. so sánh DE và BC
2) cho tam giác ABC vuông tại A và \(\widehat{BAC}\)= 60' , M thuộc BC sao cho AB+BM=AC+CM. tính\(\widehat{CAM}\)
3) cho tam giác ABC cân tại A , gọi E là điểm bất kì nằm giữa B và C , đường thẳng qua E vuông góc với AB và đường thẳng qua C vuông góc với AC cắt nhau tại D. gọi K là trung điểm của BE. tính \(\widehat{AKD}\)
4)cho tam giác ABC cân tại A. trên đường thẳng AC lấy điểm M tùy ý.đường thẳng vuông góc với BC qua M cắt BC tại H. gọi I là trung điểm của BM. tính\(\widehat{HAI}\)
Cho tam giác ABC vuông cân tại A, d là 1 đường thẳng bất kỳ qua A (d không cắt đoạn
BC).Từ B và C kẻ BD và CE cùng vuông góc với d, D và E thuộc đường thẳng d. Chứng minh rằng:
a) BD // CE;
b) Tam giác ADB = Tam giác CEA;
c) BD + CE = DE;
d) Gọi M là trung điểm của BC. CMR: Tam giác DAM = Tam giác ECM và Tam giác DME vuông cân.
a) Ta có : CE ⊥ d
BD ⊥ d
\(\Rightarrow\)CE // BD (ĐPCM)
b) Xét △CEA và △ADB có :
AC = AB
\(\widehat{EAC}=\widehat{ABD}\)(cùng phụ với \(\widehat{DAB}\))
\(\Rightarrow\) △CEA = △ADB (cạnh huyền-góc nhọn)
c) Có △CEA = △ADB
\(\Rightarrow\hept{\begin{cases}BD=AE\\CE=AD\end{cases}}\)(Cặp cạnh tương ứng)
\(\Rightarrow\)BD + CE = AE + AD = DE (ĐPCM)
d) △ABC vuông tại A có AM là trung tuyến
\(\Rightarrow\)AM = BM = CM
\(\Rightarrow\)△ABM cân tại M
Có : \(\widehat{ECA}=\widehat{BAD}\)(△CEA = △ADB)
\(\widehat{ACB}=\widehat{ABC}\) (△ABC cân tại A)
\(\Rightarrow\widehat{ECA}+\widehat{ACB}=\widehat{BAD}+\widehat{ABC}\)
Mà \(\widehat{ABC}=\widehat{MAB}\)(△MAC cân tại M)
\(\Rightarrow\widehat{ECA}+\widehat{ACB}=\widehat{BAD}+\widehat{MAB}\)
\(\Rightarrow\widehat{ECM}=\widehat{MAD}\)
Xét △ADM và △CEM có :
EC = AD
\(\widehat{ECM}=\widehat{MAD}\)
AM = CM
\(\Rightarrow\)△ADM = △CEM (c-g-c) (ĐPCM)
\(\Rightarrow\)EM = MD (Cặp cạnh tương ứng) (1)
Có : \(\widehat{EMA}+\widehat{EMC}=90^o\)
\(\widehat{EMC}=\widehat{DMA}\)(△ADM = △CEM)
\(\Rightarrow\widehat{EMA}+\widehat{DMA}=90^o\)
\(\Rightarrow\widehat{EMD}=90^o\)(2)
Từ (1) và (2) suy ra △DME vuông cân tại M.
mình không biết
Cho tam giác ABC vuông cân tại A có AB = a. Qua A vẽ đường thẳng d sao cho không cắt cạnh BC. Kẻ BH và CK lần lượt vuông góc với d tại H và K.
a, C/minh: \(BH^2+CK^2\) không đổi
b, Gọi M là trung điểm của BC . C/minh: Tam giác MHK vuông cân
Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của BC. Một đường thẳng d đi qua A và cắt đoạn BM tại một điểm khác M. Gọi và E thứ tự là chân các đường vuông góc kẻ từ B và C đến d ( D,E thuộc d )
a. CM : AD = CE
b. CM: EM là tia phân giác của góc DEC
cho ta giác ABC vuông cân tại A. Qua A vẽ đường thẳng d bất kì (d không cắt đoạn thẳng BC). Vẽ BH vuông d, CM vuông góc với d( H,K thuộc d)
a) Chứng minh BH=AK
b) Gọi M là trung điểm của BC. Chứng minh tam giác BHM= tam giác AKM
c) Chứng minh tam giác MHK vuông cân
Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân