Giải phương trinh:
\(x\sqrt{2x+3}+3\sqrt{x+5}=\sqrt{\left(2x^2+13x+15\right)}+\sqrt{2x+3}\)
giải phương trình \(x\sqrt{2x+3}+3\left(\sqrt{x+5}+1\right)=3x+\sqrt{2x^2+13x+15}+\sqrt{2x+3}\)
ĐKXĐ: \(x\ge\dfrac{-3}{2}\)
\(\Leftrightarrow x\sqrt{2x+3}-3x=\sqrt{\left(x+5\right)\left(2x+3\right)}+\sqrt{2x+3}-3\left(\sqrt{x+5}+1\right)\)
\(\Leftrightarrow x\left(\sqrt{2x+3}-3\right)=\sqrt{2x+3}\left(\sqrt{x+5}+1\right)-3\left(\sqrt{x+5}+1\right)\)
\(\Leftrightarrow x\left(\sqrt{2x+3}-3\right)=\left(\sqrt{x+5}+1\right)\left(\sqrt{2x+3}-3\right)\)
\(\Leftrightarrow\left(\sqrt{2x+3}-3\right)\left(x-1-\sqrt{x+5}\right)=0\)
TH1: \(\sqrt{2x+3}-3=0\Leftrightarrow2x+3=9\Rightarrow x=3\)
TH2: \(x-1-\sqrt{x+5}=0\Leftrightarrow x-1=\sqrt{x+5}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\\left(x-1\right)^2=x+5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x^2-3x-4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=4\\x=-1< 1\left(l\right)\end{matrix}\right.\)
Giải pt
\(1)4x^2+\sqrt{3x+1}+5=13x\)
\(2)7x^2-13x+8=2x^2.\sqrt[3]{x\left(1+3x-3x^2\right)}\)
\(3)x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)
\(4)x^3-5x^2+4x-5=\left(1-2x\right)\sqrt[3]{6x^2-2x+7}\)
\(5)8x^2-13x+7=\left(1+\dfrac{1}{x}\right)\sqrt[3]{3x^2-2}\)
Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)
giaỉ pt:
a, \(\sqrt{x +1}+2\left(x+1\right)=x-1+\sqrt{1-x}+3\sqrt{1-x^2}\)
b, \(14\sqrt{x+35}+6\sqrt{x+1}=84+\sqrt{x^2+36x+35}\)
c, \(x\sqrt{2x+3}+3\left(\sqrt{x+5}+1\right)=3x+\sqrt{2x^2+13x+15}+\sqrt{2x+3}\)
b.
ĐKXĐ: \(x\ge-1\)
\(\sqrt{\left(x+1\right)\left(x+35\right)}-14\sqrt{x+35}+84-6\sqrt{x+1}=0\)
\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{x+35}-14\right)-6\left(\sqrt{x+35}-14\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+1}-6\right)\left(\sqrt{x+35}-14\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=6\\\sqrt{x+35}=14\end{matrix}\right.\)
\(\Leftrightarrow...\)
a. ĐKXĐ: \(-1\le x\le1\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\)
\(\Rightarrow a+2a^2=-b^2+b+3ab\)
\(\Leftrightarrow\left(2a^2-3ab+b^2\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(2a-b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(2a-b+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\2a+1=b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=\sqrt{1-x}\\2\sqrt{x+1}+1=\sqrt{1-x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\4x+5+4\sqrt{x+1}=1-x\left(1\right)\end{matrix}\right.\)
(1) \(\Leftrightarrow4\sqrt{x+1}=-4-5x\) \(\left(x\le-\dfrac{4}{5}\right)\)
\(\Leftrightarrow16\left(x+1\right)=25x^2+40x+16\)
\(\Leftrightarrow25x^2+24x=0\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-\dfrac{24}{25}\end{matrix}\right.\)
c.
ĐKXĐ: \(x\ge-\dfrac{3}{2}\)
\(\Leftrightarrow x\sqrt{2x+3}-\sqrt{2x+3}+3-3x+3\sqrt{x+5}-\sqrt{\left(2x+3\right)\left(x+5\right)}=0\)
\(\Leftrightarrow\sqrt{2x+3}\left(x-1\right)-3\left(x-1\right)-\sqrt{x+5}\left(\sqrt{2x+3}-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\sqrt{2x+3}-3\right)-\sqrt{x+5}\left(\sqrt{2x+3}-3\right)=0\)
\(\Leftrightarrow\left(x-1-\sqrt{x+5}\right)\left(\sqrt{2x+3}-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1-\sqrt{x+5}=0\\\sqrt{2x+3}-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5-\sqrt{x+5}-6=0\\\sqrt{2x+3}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=-2\left(loại\right)\\\sqrt{x+5}=3\\\sqrt{2x+3}=3\end{matrix}\right.\)
\(\Leftrightarrow...\)
Giải phương trình: \(\sqrt{x^2+x+19}+\sqrt{7x^2-2x+4}+\sqrt{13x^2+19x+7}=\sqrt{3}.\left(x+5\right)\)
Giải phương trình:
1, \(8x^3-13x+7=\left(x+1\right)\sqrt[3]{3x^2-2}\)
2, \(9+3\sqrt{x\left(3-2x\right)}=7\sqrt{x}+5\sqrt{3-2x}\)
3, \(x^3-\sqrt[3]{6+\sqrt[3]{x+6}}=6\)
Giải hệ phương trình : \(\left\{{}\begin{matrix}x^3-y^3-6x^2+13x-y=10\\\sqrt{2x+y+5}-\sqrt{3-x-y}=\left(2x-5\right)y+2\end{matrix}\right.\)
Giải phương trình:
\(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\)
\(\sqrt{x+3}+2\sqrt{x}=2+\sqrt{x\left(x+3\right)}\)
Tham khảo:
1) Giải phương trình : \(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\) - Hoc24
\(\sqrt{x+3}+2\sqrt{x}=2+\sqrt{x\left(x+3\right)}\left(đk:x\ge0\right)\)
\(\Leftrightarrow x+3+4x+4\sqrt{x\left(x+3\right)}=4+x\left(x+3\right)+4\sqrt{x\left(x+3\right)}\)
\(\Leftrightarrow5x+3=4+x^2+3x\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\left(tm\right)\)
giải phương trình:
\(\sqrt{x^2+x+19}+\sqrt{7x^2-2x+4}+\sqrt{13x^2+19x+7}=\sqrt{3}\left(x+5\right)\)
Giải phương trình:
a. \(3\sqrt{8x}-\sqrt{32x}+\sqrt{50x}=21\)
b. \(\sqrt{25x+50}+3\sqrt{4x+8}-2\sqrt{16x+32}=15\)
c. \(\sqrt{\left(x-2\right)^2}=12\)
d. \(\sqrt{x^2-6x+9}-3=5\)
e.\(\sqrt{\left(2x-1\right)^2}-x=3\)
f. \(\sqrt{3x-6}-x=-2\)
h. \(\sqrt{3-2x}-2=x\)
a.
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow 6\sqrt{2x}-4\sqrt{2x}+5\sqrt{2x}=21$
$\Leftrightarrow 7\sqrt{2x}=21$
$\Leftrightarrow \sqrt{2x}=3$
$\Leftrightarrow 2x=9$
$\Leftrightarrow x=\frac{9}{2}$ (tm)
b.
ĐKXĐ: $x\geq -2$
PT $\Leftrightarrow \sqrt{25(x+2)}+3\sqrt{4(x+2)}-2\sqrt{16(x+2)}=15$
$\Leftrightarrow 5\sqrt{x+2}+6\sqrt{x+2}-8\sqrt{x+2}=15$
$\Leftrightarrow 3\sqrt{x+2}=15$
$\Leftrightarrow \sqrt{x+2}=5$
$\Leftrightarrow x+2=25$
$\Leftrightarrow x=23$ (tm)
c.
$\sqrt{(x-2)^2}=12$
$\Leftrightarrow |x-2|=12$
$\Leftrightarrow x-2=12$ hoặc $x-2=-12$
$\Leftrightarrow x=14$ hoặc $x=-10$
e.
PT $\Leftrightarrow |2x-1|-x=3$
Nếu $x\geq \frac{1}{2}$ thì $2x-1-x=3$
$\Leftrightarrow x=4$ (tm)
Nếu $x< \frac{1}{2}$ thì $1-2x-x=3$
$\Leftrightarrow x=\frac{-2}{3}$ (tm)
f.
ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{3(x-2)}-(x-2)=0$
$\Leftrightarrow \sqrt{x-2}(\sqrt{3}-\sqrt{x-2})=0$
$\Leftrightarrow \sqrt{x-2}=0$ hoặc $\sqrt{3}-\sqrt{x-2}=0$
$\Leftrightarrow x=2$ hoặc $x=5$ (tm)
h. ĐKXĐ: $x\leq \frac{3}{2}$
PT $\Leftrightarrow \sqrt{3-2x}=x+2$
\(\Rightarrow \left\{\begin{matrix} x+2\geq 0\\ 3-2x=(x+2)^2=x^2+4x+4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -2\\ x^2+6x+1=0\end{matrix}\right.\)
\(\Leftrightarrow x=-3+2\sqrt{2}\) (tm)
Vậy.......