Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Tiến Minh
Xem chi tiết
Hồ Sỹ Tiến
8 tháng 5 2016 lúc 15:47

A = x +y +1 => A - 1 = x +y.

Từ gt suy ra : (A -1)2 + 7(A -1) + y2 + 10 = 0 => A2 + 5A + 4 + y2 = 0 => A2 + 5A + 4 = - y2 <= 0. Dấu = xảy ra khi y = 0

=> (A +1)(A +4) <= 0 => - 1 <= A <= -4

A = -1 <=> y = 0 và x + y = -1 => y = 0 và x = -1

A = -4 <=> y =0 và x + y = -4 => y = 0 và x = -4

Vậy minA = -1 khi x = -1, y = 0

maxA = -4 khi x = -4, y = 0

miko hậu đậu
Xem chi tiết
Mạc Thu Hà
19 tháng 3 2017 lúc 8:47

Dùng bất đẳng thức Bu-nhi-a là ra rồi

Bùi Thế Hào
18 tháng 3 2017 lúc 22:47

(X+y)2=x2+y2+2xy

Lại có: 2xy <= x2+y2

=> (x+y)2 <= x2+y2+x2+y2=2.(x2+y2)=2.1=2

=> Giá trị lớn nhất của (x+y)2 là 2

NGUYỄN MINH HUY
Xem chi tiết
Vũ quang tùng
Xem chi tiết
Pham Van Hung
2 tháng 3 2020 lúc 8:11

Bài 2: 

Tìm GTLN: \(x^2+xy+y^2=3\Leftrightarrow xy=\left(x+y\right)^2-3\Rightarrow xy\ge-3\Rightarrow-7xy\le21\)

\(P=2\left(x^2+xy+y^2\right)-7xy\le2.3+21=27\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\xy=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\)

Tìm GTNN: 

 Chứng minh \(xy\le\frac{1}{2}\left(x^2+y^2\right)\Rightarrow\frac{3}{2}xy\le\frac{1}{2}\left(x^2+y^2+xy\right)\)

\(\Rightarrow\frac{3}{2}xy\le\frac{3}{2}\Rightarrow xy\le1\Rightarrow-7xy\ge-7\)

\(P=2\left(x^2+xy+y^2\right)-7xy\ge2.3-7=-1\)

Chúc bạn học tốt.

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
16 tháng 3 2020 lúc 14:05

Làm bài 1 ha :) 

Áp dụng BĐT Cô si ta có:

\(\left(1-x^3\right)+\left(1-y^3\right)+\left(1-z^3\right)\ge3\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)

\(\Leftrightarrow\frac{3-\left(x^3+y^3+z^3\right)}{3}\ge\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)

Mặt khác:\(\frac{3-\left(x^3+y^3+z^3\right)}{3}\le\frac{3-3xyz}{3}=1-xyz\)

Khi đó:

\(\left(1-xyz\right)^3\ge\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)

Giống Holder ghê vậy ta :D

Khách vãng lai đã xóa
Tường Nguyễn Thế
Xem chi tiết
Pham Tien Dat
Xem chi tiết
Ami Mizuno
7 tháng 2 2022 lúc 20:43

Bạn xem lại đề nghen, đoạn thỏa mãn đó có vấn đề phải không nhỉ?

Hoàng Tử Hà
8 tháng 2 2022 lúc 0:51

Bạn nên dùng Geogebra hoặc Desmos vẽ cái đường tròn kia sẽ dễ nhìn hơn, gửi nhầm vô phần cmt của bạn dưới nên mình gửi lại

undefined

 

Rosie
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 3 2023 lúc 9:08

Đặt \(\left\{{}\begin{matrix}x-4=a\\y-3=b\end{matrix}\right.\) \(\Rightarrow a^2+b^2=5\)

\(Q=\sqrt{\left(a+5\right)^2+b^2}+\sqrt{\left(a+3\right)^2+\left(b+4\right)^2}\)

\(\Rightarrow Q\le\sqrt{2\left[\left(a+5\right)^2+b^2+\left(a+3\right)^2+\left(b+4\right)^2\right]}\) (Bunhiacopxki)

\(\Rightarrow Q\le\sqrt{4\left(a^2+8a+b^2+4b+25\right)}\)

\(\Rightarrow Q\le\sqrt{4\left(a^2+2.4a+b^2+2.2b+25\right)}\)

\(\Rightarrow Q\le\sqrt{4\left(a^2+2\left(a^2+4\right)+b^2+2\left(b^2+1\right)+25\right)}\)

\(\Rightarrow Q\le\sqrt{4\left(3a^2+3b^2+35\right)}\le\sqrt{4\left(3.5+35\right)}=10\sqrt{2}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=6\\y=4\end{matrix}\right.\)

Lê Minh Đức
Xem chi tiết
Hoàng Phúc
22 tháng 5 2017 lúc 20:31

x,y>0 => theo bdt AM-GM thì x+y >/ 2 căn (xy)=2 , x^2+y^2 >/ 2xy=2 (do xy=1)

P=(x+y+1)(x^2+y^2)+4/(x+y)

>/ 2(x+y+1)+4/(x+y)=[(x+y)+4/(x+y)]+(x+y+2)

x,y>0=>x+y>0 => theo bdt AM-GM thì P >/ 2.2+2+2=8 

minP=8 

Lê Minh Đức
Xem chi tiết
alibaba nguyễn
16 tháng 5 2017 lúc 17:50

Đặt: y + z = a thì ta có

\(x\le2a\)

Từ đề bài thì ta có thể suy ra

\(A\le\frac{2x}{a^2}-\frac{1}{\left(x+a\right)^3}\)

\(\le\frac{4}{a}-\frac{1}{27a^3}=\frac{108a^2-1}{27a^3}\)

 \(=16-\frac{\left(6a-1\right)^2\left(12a+1\right)}{27a^3}\le16\)

 Vậy GTLN là \(A=16\). Dấu = xảy ra khi \(\hept{\begin{cases}x=\frac{1}{3}\\y=z=\frac{1}{12}\end{cases}}\) 

Lê Minh Đức
16 tháng 5 2017 lúc 20:17

Làm sao để tách được bởi vì làm sao dự đoán dượcđiểm rơi?

nguyen minh hoang
26 tháng 9 2019 lúc 20:36

cái cục cứt

Hoàng Bảo Trân
Xem chi tiết