cho các số thực dương tm 2x+y>=7. Tìm gtnn \(S=x^2-x+3y+\dfrac{9}{x}+\dfrac{1}{y}+9\)
Cho x,y là các số thực dương TM: x+y=1 Tìm GTNN: \(\dfrac{1}{x^3+y^3}+\dfrac{1}{xy}\)
Bạn xem lại đề bài, mặc dù bài này giải được ra kết quả cụ thể, nhưng chắc không ai cho đề như vậy cả
Sau khi tính toán thì \(P_{min}=4+2\sqrt{3}\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{3-\sqrt{6\sqrt{3}-9}}{6};\dfrac{3+\sqrt{6\sqrt{3}-9}}{6}\right)\) và hoán vị
Nhìn thật kinh khủng, chẳng có lý gì cả.
Nếu điều kiện \(x+y=1\) thì biểu thức \(P=\dfrac{a}{x^3+y^3}+\dfrac{b}{xy}\) cần có tỉ lệ \(\dfrac{b}{a}\ge3\) để ra 1 kết quả đẹp mắt và bình thường
Ví dụ có thể cho đề là \(P=\dfrac{1}{3\left(x^3+y^3\right)}+\dfrac{1}{xy}\) hoặc \(P=\dfrac{1}{x^3+y^3}+\dfrac{4}{xy}\) gì đó :)
cho 2 số dương x,y tm xy=1 , tìm GTNN của A= x^2+3x+y^2+3y + 9/(x^2+y^2+1)
Cho x y là các số thực dương tm x^2+y^2=9 tìm gtnn của p=3x+y+xy
cho x,y là các số thực dương thỏa mãn: 1≤x≤2, 1≤y≤2. Tìm giá trị nhỏ nhất.
P=\(\dfrac{x+2y}{x^2+3y+5}+\dfrac{y+2x}{y^2+3x+5}+\dfrac{1}{4\left(x+y-1\right)}\)
Do \(1\le x\le2\Rightarrow\left(x-1\right)\left(x-2\right)\le0\)
\(\Leftrightarrow x^2+2\le3x\)
Hoàn toàn tương tự ta có \(y^2+2\le3y\)
Do đó: \(P\ge\dfrac{x+2y}{3x+3y+3}+\dfrac{2x+y}{3x+3y+3}+\dfrac{1}{4\left(x+y-1\right)}\)
\(P\ge\dfrac{x+y}{x+y+1}+\dfrac{1}{4\left(x+y-1\right)}\)
Đặt \(a=x+y-1\Rightarrow1\le a\le3\)
\(\Rightarrow P\ge f\left(a\right)=\dfrac{a+1}{a+2}+\dfrac{1}{4a}\)
\(f'\left(a\right)=\dfrac{3a^2-4a-4}{4a^2\left(a+2\right)^2}=\dfrac{\left(a-2\right)\left(3a+2\right)}{4a^2\left(a+2\right)^2}=0\Rightarrow a=2\)
\(f\left(1\right)=\dfrac{11}{12}\) ; \(f\left(2\right)=\dfrac{7}{8}\) ; \(f\left(3\right)=\dfrac{53}{60}\)
\(\Rightarrow f\left(a\right)\ge\dfrac{7}{8}\Rightarrow P_{min}=\dfrac{7}{8}\) khi \(\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)
Bài 1 : Cho x, y > 0 thỏa mãn 2x+y>=7. Tìm GTNN của \(P=x^2-x+3y+\dfrac{9}{x}+\dfrac{1}{y}+9\)
Bài 2 : Cho x, y, z >0 thỏa mãn x+y+z=1. Tìm GTNN của \(P=\dfrac{1}{x}+\dfrac{4}{y}+\dfrac{9}{z}\)
Bài 2. Áp dụng BĐT Cauchy dưới dạng Engel , ta có :
\(\dfrac{1}{x}+\dfrac{4}{y}+\dfrac{9}{z}\) ≥ \(\dfrac{\left(1+4+9\right)^2}{x+y+z}=196\)
⇒ \(P_{MIN}=196."="\) ⇔ \(x=y=z=\dfrac{1}{3}\)
Sorry nhé , mình làm lại bài 2 .
\(P=\dfrac{1}{x}+\dfrac{4}{y}+\dfrac{9}{z}\ge\dfrac{\left(1+2+3\right)^2}{x+y+z}=36\)
\(\Rightarrow P_{MIN}=36."="\Leftrightarrow x=y=z=\dfrac{1}{3}\)
Cho các số thực dương x,y thỏa mãn \(x+y>=3\). Chứng minh :\(x+y+\dfrac{1}{2x}+\dfrac{1}{2y}>=\dfrac{9}{2}\) Đẳng thức xảy ra khi nào?
Cho x,y,z là các số thực dương thỏa mãn điều kiện x+y+z=1. Tìm GTNN của biểu thức \(A=\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)
Cho x,y,z lớn hơn 0 thỏa mãn 13x+5y+12z=9. Tìm GTLN của biểu thức \(b=\dfrac{xy}{2x+y}+\dfrac{3yz}{2y+z}+\dfrac{6zx}{2z+x}\)
Giúp mk nhanh nhé mọi người ơi
chi các số thực dương x,y,z thỏa mãn \(x^4+y^4+z^4=3\)
Tìm GTNN của T=\(\sqrt{\dfrac{yz}{7-2x}}+\sqrt{\dfrac{zx}{7-2y}}+\sqrt{\dfrac{xy}{7-2z}}\)
Cho x, y là các số thực dương thỏa mãn x + \(\dfrac{1}{y}\) = 1. Tìm GTNN của P = \(\dfrac{x}{y}+\dfrac{y}{x}\)