giải các pt sau:
\(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)
GIẢI CÁC PT SAU:
\(\left(x^2+5x\right)^2+2x^2+10x-24=0\)
\(\left(x^2-4x+1\right)^2+2x^2-8x-1=0\)
Lời giải:
1.
PT $\Leftrightarrow (x^2+5x)^2+2(x^2+5x)-24=0$
$\Leftrightarrow t^2+2t-24=0$ (đặt $x^2+5x=t$)
$\Leftrightarrow (t-4)(t+6)=0$
$\Rightarrow t-4=0$ hoặc $t+6=0$
Nếu $t-4=0\Leftrightarrow x^2+5x-4=0$
$\Leftrightarrow x=\frac{-5\pm \sqrt{41}}{2}$
Nếu $t+6=0$
$\Leftrightarrow x^2+5x+6=0$
$\Leftrightarrow (x+2)(x+3)=0\Rightarrow x=-2$ hoặc $x=-3$
2.
PT $\Leftrightarrow (x^2-4x+1)^2+2(x^2-4x+1)-3=0$
$\Leftrightarrow t^2+2t-3=0$ (đặt $x^2-4x+1=t$)
$\Leftrightarrow (t-1)(t+3)=0$
$\Rightarrow t-1=0$ hoặc $t+3=0$
Nếu $t-1=0\Leftrightarrow x^2-4x=0\Leftrightarrow x(x-4)=0$
$\Rightarrow x=0$ hoặc $x=4$
Nếu $t+3=0\Leftrightarrow x^2-4x+4=0$
$\Leftrightarrow (x-2)^2=0\Leftrightarrow x=2$
Giải pt
\(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)
\(\Rightarrow2x\left(x+2\right)\left(x+2\right)-8x^2=2\left(x^3-8\right).\)
\(\Rightarrow\left(2x^2+4\right)\left(x+2\right)-8x^2=2x^3-8\)
\(\Rightarrow2x^3+4x^2+4x+8=2x^2-8\)
\(\Rightarrow2x^3+4x^2-2x^2+4x=-8-8\)
\(\Rightarrow2x^3+2x^2+4x=-16\)
\(\Rightarrow2x\left(x^2+x+2\right)=-16\)tự giải tiếp nhé!
2x(x+2)^2-8x^2=2(x-2)(x^2+2x+4)
2x(x^2+4x+4)-8x^2=2(x^3-8)
2x^3+8x^2+8x-8x^2=2x^3-16
2x^3-2x^3+8x^2-8x^2+8x=-16
8x=-16
x=-2
Vay pt co tap nghiem la :S={-2}
Giải các phương trình sau:
f. 5 – (x – 6) = 4(3 – 2x)
g. 7 – (2x + 4) = – (x + 4)
h. \(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)
i. \(\left(x-2^3\right)+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)
k. (x + 1)(2x – 3) = (2x – 1)(x + 5)
f. 5 – (x – 6) = 4(3 – 2x)
<=>5-x+6=12-8x
<=>7x=1
<=>x=\(\dfrac{1}{7}\)
g. 7 – (2x + 4) = – (x + 4)
<=>7-2x-4=-x-4
<=>x=7
h. 2x(x+2)\(^2\)−8x\(^2\)=2(x−2)(x\(^2\)+2x+4)
<=>\(2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)
<=>\(2x^3+8x^2+8x-8x^2=2\left(x^3-8\right)\)
<=>\(2x^3+8x=2x^3-16\)
<=>\(8x=-16\)
<=>\(x=-2\)
i. (x−2\(^3\))+(3x−1)(3x+1)=(x+1)\(^3\)
<=>\(x-8+9x^2-1=x^3+3x^2+3x+1\)
<=>\(6x^2-2x-10=0\)
<=>\(3x^2-x-5=0\)
<=>\(\left[{}\begin{matrix}x=\dfrac{1+\sqrt{61}}{6}\\x=\dfrac{1-\sqrt{61}}{6}\end{matrix}\right.\)
k. (x + 1)(2x – 3) = (2x – 1)(x + 5)
<=>\(2x^2-x-3=2x^2+9x-5\)
<=>10x=2
<=>\(x=\dfrac{1}{5}\)
f. 5 – (x – 6) = 4(3 – 2x)
<=>5-x+6=12-8x
<=>7x=1
<=>x=\(\dfrac{1}{7}\)
g. 7 – (2x + 4) = – (x + 4)
<=>7-2x-4=-x-4
<=>x=7
h. \(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)
<=>\(2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)
<=>\(2x^3+8x^2+8x-8x^2=2x^3-16\)
<=>\(8x=-16\)
<=>x=-2
i.\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)
<=>\(x^3-6x^2+12x+8+9x^2-1=x^3+3x^2+3x+1\)
<=>\(9x+6=0\)
<=>x=\(\dfrac{-2}{3}\)
k. (x + 1)(2x – 3) = (2x – 1)(x + 5)
<=>\(2x^2-x-3=2x^2+9x-5\)
<=>10x=2
<=>
Giải pt \(\left(2x^2-2x+1\right)\left(2x+1\right)+\left(8x^2-8x+1\right)\sqrt{-x^2+x}=0\)
Bằng cách phân tích vế trái thành nhân tử, giải các PT sau:
a) \(2x.\left(x-3\right)+5\left(x-3\right)\)
b) \(\left(x^2-4\right)+\left(x-2\right).\left(3-2x\right)=0\)
c) \(x^3-3x^2+3x-1=0\)
a: =(x-3)(2x+5)
b: \(\Leftrightarrow\left(x-2\right)\left(x+2+3-2x\right)=0\)
=>(x-2)(5-x)=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
Giải các pt sau
a,\(\left(x^2+2x+2\right)\left(x^2+2x+3\right)\)=0
b,\(\left(x+3\right)\left(x-3\right)\left(x^2-11\right)+3=2\)
c,\(\left(x+3\right)^4+\left(x+5\right)^4=2\)
a) \(\left(x^2+2x+2\right)\left(x^2+2x+3\right)=0\)
<=> \(\orbr{\begin{cases}x^2+2x+2=0\\x^2+2x+3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x+1\right)^2+1=0\left(vl\right)\\\left(x+1\right)^2+2=0\left(vl\right)\end{cases}}\)
=> pt vô nghiệm
b) \(\left(x+3\right)\left(x-3\right)\left(x^2-11\right)+3=2\)
<=> \(\left(x^2-9\right)\left(x^2-11\right)+1=0\)
<=> \(\left(x^2-9\right)^2-2\left(x^2-9\right)+1=0\)
<=> \(\left(x^2-9-1\right)^2=0\)
<=> \(x^2-10=0\)
<=> \(x=\pm\sqrt{10}\)
c) \(\left(x+3\right)^4+\left(x+5\right)^4=2\)
<=> \(\left(x+4-1\right)^4+\left(x+4+1\right)^4=2\)
Đặt x + 4 = a
<=> \(\left(a-1\right)^4+\left(a+1\right)^4=2\)
<=> \(a^4-4a^3+6a^2-4a+1+a^4+4a^3+6a^2+4a+1=2\)
<=> \(a^4+12a^2=0\)
<=> \(a^2\left(a^2+12\right)=0\)
<=> a = 0 (vì a2 + 12 > 0)
Vậy S = {0}
Làm nốt c
Đặt \(x+4=t\)
\(\Leftrightarrow\left(t-1\right)^4+\left(t+1\right)^4=2\)
\(\Leftrightarrow\left(t^2+2t+t\right)\left(t^2-2t+1\right)+\left(t+1\right)^4=2\)
\(\Leftrightarrow2t^4+12t^2+2=2\Leftrightarrow2t^4+12t^2=0\)
\(\Leftrightarrow2t^2\left(t^2+6\right)=0\Leftrightarrow t^2=-6\) ( vô lí )
Phương trình vô nghiệm
giải hệ pt sau
\(\left\{{}\begin{matrix}y^3+\sqrt{8x^4-2y}=2\left(2x^4+3\right)\\\sqrt{2x^2+x+y}+2\sqrt{x+2y}=\sqrt{9x-2x^2+19y}\end{matrix}\right.\)
Giải các pt sau
a, \(\left(x-1\right)\left(2x+5\right)\left(x^2+2\right)\)=0
b,\(\left(2x-1\right)\left(x-5\right)\left(x^2+3\right)\)=0
c,\(2\left(9x^2+6x+1\right)=\left(3x+1\right)\left(x-2\right)\)
d,\(\left(2x+3\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)
a); b) Do tích = 0
=> Từng thừa số = 0 và ta nhận xét: \(x^2+2;x^2+3>0\)
=> a) \(\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)
và câu b) \(\orbr{\begin{cases}x=\frac{1}{2}\\x=5\end{cases}}\)
a; *x-1=0 <=>x=1
*2x+5=0 <=>x=-2,5
*x2+2=0 <=> ko có x
b; tương tự a
a/ \(\left(x-1\right)\left(2x+5\right)\left(x^2+2\right)=0\)
Vì \(x^2\ge0\Rightarrow x^2+2\ge2>0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x+5=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)
Baøi 1. Giải các phương trình sau bằng cách đưa về dạng ax + b = 0:
\(a,2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)
\(b,7-\left(2x+4\right)=-\left(x+4\right)\)