tìm M max =-x^2-2x+5
Tìm max: a, M= -2x^2 +3x +1 b, N =-x^2 + 2xy - 4y^2 + 2x+ 10y +5
tìm Max của Q = 5-3.(2x-1)^2
M= x^2+8/x^2+2
1;\(Q=5-3\left(2x-1\right)^2\)
Có \(3\left(2x-1\right)^2\ge0\)
\(\Rightarrow Q\le5-0=5\)
Dấu "=" xảy ra khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)
Vậy Max Q = 5 <=> x = 1/2
2;\(M=\frac{x^2+8}{x^2+2}=1+\frac{6}{x^2+2}\)
Để M đạt GTLN \(\Rightarrow\frac{6}{x^2+2}\)phải lớn nhất
\(\Rightarrow x^2+2\)phải đạt GTNN
Mà \(x^2+2\ge2\Leftrightarrow x=0\)
Vậy \(M\ge1+\frac{6}{2}=1+3=4\)(x = 0)
Tìm min: a, A=9x^2 - 6x +5 b, B= 2x^2 + 2xy + y^2 -2x +2y+2
Tìm max: a, M= -2x^2 +3x +1 b, N =-x^2 + 2xy - 4y^2 + 2x+ 10y +5
Tìm m để S= x2+y2 max. Biết:
x= m+1
y= 2x-m-5
1. Cho x,y,z >0 t/m: \(\dfrac{1}{1+x}+\dfrac{1}{1+y}+\dfrac{1}{1+z}=2\)
Tìm max (xyz)
2. Cho \(2x^2+y^2-2xy=1\)
a) CM: |x| ≤ 1
b) Tìm max \(P=4x^4+4y^4-2x^2y^2\)
\(1,\dfrac{1}{1+x}=1-\dfrac{1}{1+y}+1-\dfrac{1}{1+z}=\dfrac{y}{1+y}+\dfrac{z}{1+z}\ge2\sqrt{\dfrac{xy}{\left(1+x\right)\left(1+y\right)}}\)
Cmtt: \(\dfrac{1}{1+y}\ge2\sqrt{\dfrac{xz}{\left(1+x\right)\left(1+z\right)}};\dfrac{1}{1+z}\ge2\sqrt{\dfrac{xy}{\left(1+x\right)\left(1+y\right)}}\)
Nhân VTV
\(\Leftrightarrow\dfrac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge8\sqrt{\dfrac{x^2y^2z^2}{\left(1+x\right)^2\left(1+y\right)^2\left(1+z\right)^2}}\\ \Leftrightarrow\dfrac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\dfrac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\\ \Leftrightarrow8xyz\le1\Leftrightarrow xyz\le\dfrac{1}{8}\)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{2}\)
\(2,\\ a,2x^2+y^2-2xy=1\\ \Leftrightarrow\left(x-y\right)^2+x^2=1\\ \Leftrightarrow\left(x-y\right)^2=1-x^2\ge0\\ \Leftrightarrow x^2\le1\Leftrightarrow\sqrt{x^2}\le1\Leftrightarrow\left|x\right|\le1\)
Tìm
Min A= 3x^2+2x+7/x^2+2x+3
Max B= 2x^2-16x+29/x^2-6x+10
Min C = 6x^2-14x+29/x^2-2x+5
Max D = 5x^2+2x+2/x^2+x+1
1. Tìm MIN của : x2 + 2x +5
2. Tìm MAX của: -4x2 + 2x +5
a)x2+2x+4+1=(x+1)2+1
ma (x+1)2 >0
nen (x+1)2+1>1
vay x2+2x+5 min la 1 khi x=-1
Tìm max của M=(x^2+10x-7)/(x^2+2x+1)
M=\(\frac{x^2+10x-7}{x^2+2x+1}=\frac{x^2+10x+25-32}{x^2+2x+1}=\frac{\left(x+5\right)^2-32}{\left(x+1\right)^2}\)
\(\Rightarrow\frac{\left(x+5\right)^2-32}{\left(x+1\right)^2}\le-32\)
Vay Max la -32
Mk cx k chắc lắm đâu .
Tìm Max của A = \(\dfrac{3x^2-6x+17}{x^2-2x+5}\)
\(A=\dfrac{3x^2-6x+17}{x^2-2x+5}\)
\(=3+\dfrac{2}{x^2-2x+5}\)
Mà \(x^2-2x+5\ge4\)
=> \(\dfrac{2}{x^2-2x+5}\le\dfrac{1}{2}\)
=> A ≤ 7/2
Dấu "=" xảy ra ⇔ x = 1
Ta có : \(A=\dfrac{3x^2-6x+17}{x^2-2x+5}=\dfrac{3x^2-6x+15+2}{x^2-2x+5}=\dfrac{3\left(x^2-2x+5\right)+2}{x^2-2x+5}\)
\(=3+\dfrac{2}{x^2-2x+5}\)
- Thấy : \(x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
Lại có : \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+4\ge4\forall x\)
\(\Rightarrow\dfrac{2}{x^2-2x+5}\le\dfrac{2}{4}=\dfrac{1}{2}\)
\(\Rightarrow3+\dfrac{2}{x^2-2x+5}\le\dfrac{7}{2}\)
\(HayA\le\dfrac{7}{2}\)
Vậy MaxA = \(\dfrac{7}{2}\) Dấu " = " xảy ra <=> x - 1 = 0
<=> x = 1 .